高级检索

基于复形的B-Rep模型高效布尔运算方法

Efficient Boolean Operation for B-Rep Models Based on Complexes

  • 摘要: 布尔运算是几何内核的基本功能, 算法的性能直接反映了内核的造型质量.针对现有布尔运算效率低及难以处理非流形场景的问题, 在选择几何复形理论基础上提出一种高效的布尔运算算法. 首先, 提出带有注册机制的V-细分算法, 解决了临时非流形对象的表示问题, 并有效减少了相交次数; 然后, 提出了组合分解策略, 有效简化了传统选择及简化算子逻辑,减少了实体拓扑元素重复检索与重复简化. 最后, 提出一种多次细分方法解决了布尔运算过程中非流形体的处理问题. 所述方法实现了布尔运算过程中非流形对象与布尔体的统一表达问题, 简化了算法复杂度并大幅度提高了布尔运算效率. 在某复杂飞机模型布尔测试中, 所提算法耗时较OCCT效率提高10倍以上, 与ACIS算法基本持平.

     

    Abstract: Boolean operations are a fundamental capability of any geometric kernel; their performance directly de-termines the modeling quality of the kernel. To address the low efficiency of existing Boolean operations and their difficulty in handling non-manifold scenarios, we propose a high-performance Boolean algorithm grounded in selective geometric complex theory. First, we introduce a V-subdivision scheme with a regis-tration mechanism that represents transient non-manifold objects and drastically reduces intersection tests. Second, a combinatorial decomposition strategy is presented that streamlines the traditional selection and simplification operators, eliminating redundant topological element searches and repeated simplifications. Finally, a multi-pass subdivision method is devised to robustly process non-manifold solids during Boolean evaluation. The proposed approach unifies the representation of non-manifold objects and regular Boolean operands, yielding a significant speed-up. In a full-scale aircraft assembly benchmark, our algorithm out-performs OCCT by more than tenfold and matches the speed of ACIS.

     

/

返回文章
返回