高级检索

深度网络生成式伪造人脸检测方法研究综述

Review of Deep Network Generative Fake Face Detection Methods

  • 摘要: 随着深度网络生成式伪造人脸技术的迅速传播, 不法分子通过伪造人脸图像和视频实施电信诈骗等犯罪活动, 如何从海量数据中高效、准确地检测出伪造人脸成为研究焦点.文中从深度网络生成式伪造人脸图像和生成式伪造人脸视频2个角度出发, 系统归纳、分析、比较了当前伪造人脸检测方法.针对伪造人脸图像, 从基于数字图像处理基础、深层次特征提取、空间域特征分析、多特征融合分析和指纹检测5个类别详细介绍了检测方法; 并从生理信号、身份信息、多模态和时空不一致4个类别对伪造人脸视频的检测方法进行了探讨.分析表明, 目前深度网络生成式伪造人脸检测方法的泛化能力有待提高, 在未来的研究中, 应当着重提升模型的跨数据集泛化能力、准确性和实用性, 从而更好地防范虚假信息传播, 以保护个人隐私和维护网络安全环境.

     

    Abstract: With the rapid spread of deep network generated fake face technology, criminals perpetrate telecom fraud, manipulate public opinion, and disseminate obscenity by forging face images and videos. How to efficiently and accurately detect fake faces from massive data has become a research focus. In this review, we systematically summarize, analyze and compare the current deep network generative forgery face detection methods from two fields: generative forgery face image and generative forgery face video. For the forged face images, the detection methods are introduced in detail from five categories: digital image processing foundation, deep feature extraction, spatial domain feature analysis, multi-feature fusion analysis and fingerprint detection. The detection methods of fake face videos are also discussed from four categories: physiological signals, identity information, multi-modal and spatio-temporal inconsistency. The analysis shows that the generalization ability of the current deep network generative fake face detection method needs to be improved. In future research, we should focus on improving the cross-dataset generalization ability, accuracy and practicality of the model, so as to better prevent the spread of false information, protect personal privacy and maintain network security environment.

     

/

返回文章
返回