高级检索

基于强化学习的机器人自主探索与物体感知算法

Autonomous Exploration and Object Perception Algorithm for a Robot Based on Reinforcement Learning

  • 摘要: 针对如何在未知室内场景的探索中高效感知物体的问题,提出一种机器人自主探索与物体感知算法.利用深度强化学习让机器人通过与环境交互的方式学会利用场景的布局规律和语义信息获得更加高效、高质量的探索策略.算法使用模块化的方式解决强化学习训练困难的问题,分为同时定位与地图构建模块、全局探索模块、路径规划模块和局部探索模块.首先同时定位与地图构建模块根据传感器所得数据构建地图;然后全局探索模块根据当前地图决策长期目标点,规划机器人将要探索的区域;接着路径规划模块根据机器人当前位置和长期目标点规划行进路径;最后局部探索模块基于机器人周围的局部地图信息规划每一步行进时传感器的朝向并更新地图.在Habitat仿真环境中与SC和ANS这2种先进算法在Gibson和Matterport3D公开数据集上进行实验的结果表明,所提算法在小、中、大和超大场景中的物体感知率分别为0.942,0.866,0.652和0.506,表现出对场景良好的感知性能.

     

    Abstract: In order to efficiently perceive objects in the exploration of unknown indoor scenes, an autonomous exploration and object perception algorithm for a robot is proposed. Using deep reinforcement learning, the robot learns to use the layout rules and semantic information of the scene to obtain a more efficient and high-quality exploration strategy through interaction with the environment. The algorithm uses a modular framework to conquer the difficulty in reinforcement learning training, which is divided into simultaneous localization and mapping module, global exploration module, path planning module and local exploration module. The simultaneous localization and mapping module construct a map based on the data obtained by sensors. Then the global exploration module decides a long term goal based on the map to guide the robot to the area to be explored. Next, the path planning module is employed to generate a collision-free trajectory for robot navigation. And the local exploration module plans the orientation of the sensor on robot at each step based on the local map and updates the map. The comparative experiments are conducted in Gibson and Matterport3D public datasets with SC and ANS two advanced algorithms in Habitat simulation environment. The results show that the proposed algorithm has object perception rates of 0.942, 0.866, 0.652 and 0.506 in small, medium, large and extra-large scenes respectively, demonstrating good perception performance for scenes.

     

/

返回文章
返回