高级检索
吕梦雅, 王晓龙, 李凯旋, 孙梦梦, 周莉莎, 郭栋梁, 赵静. 负面评论引导的高维多元数据可视分析系统[J]. 计算机辅助设计与图形学学报, 2024, 36(6): 937-947. DOI: 10.3724/SP.J.1089.2024.19874
引用本文: 吕梦雅, 王晓龙, 李凯旋, 孙梦梦, 周莉莎, 郭栋梁, 赵静. 负面评论引导的高维多元数据可视分析系统[J]. 计算机辅助设计与图形学学报, 2024, 36(6): 937-947. DOI: 10.3724/SP.J.1089.2024.19874
Lyu Mengya, Wang Xiaolong, Li Kaixuan, Sun Mengmeng, Zhou Lisha, Guo Dongliang, Zhao Jing. High-Dimensional Multi-Attributeed Data Visual Analysis System for Negative Comment Guidance[J]. Journal of Computer-Aided Design & Computer Graphics, 2024, 36(6): 937-947. DOI: 10.3724/SP.J.1089.2024.19874
Citation: Lyu Mengya, Wang Xiaolong, Li Kaixuan, Sun Mengmeng, Zhou Lisha, Guo Dongliang, Zhao Jing. High-Dimensional Multi-Attributeed Data Visual Analysis System for Negative Comment Guidance[J]. Journal of Computer-Aided Design & Computer Graphics, 2024, 36(6): 937-947. DOI: 10.3724/SP.J.1089.2024.19874

负面评论引导的高维多元数据可视分析系统

High-Dimensional Multi-Attributeed Data Visual Analysis System for Negative Comment Guidance

  • 摘要: 随着互联网平台以及多用户社交网络的成熟,群体用户消费体验的参考价值日趋扩大,在海量评论数据中,负面评论对企业和消费者的参考价值更为突出,有效的面向负面评论的可视分析是有必要的.针对评论数据高维多元的特征,为了给企业和消费者提供全新的评论分析视角,以负面评论为切入点,给出负面评论的划定范围,提出了一个交互式的可视分析系统.首先,利用情感分析和意见挖掘方法处理用户评论数据,并提出评论个体影响力差异量化方法;其次设计了主题情感波纹图、评论比较视图等一系列交互式可视化表示方法,利用动态交互式方法构建多维度关联视图探索影响负面评论产生的因素,负面评论产生的原因及其个体化差异.3个案例的结果表明,所提系统是有效和实用的;同时,该系统还可扩展应用于其他领域的评论文本可视分析中.

     

    Abstract: With the maturity technology of Internet platform and multi-user social network, the reference value of group user consumption experience is expanding. In the massive comment data, negative comments are particularly important for enterprises and consumers. Therefore, effective visual analysis of negative comments is necessary. According to the multidimensional and multivariate characteristics of comment data, the paper takes negative comments as the starting point and defines their scopes. Furthermore, the paper proposes an interactive visual analysis system, which provides enterprises and consumers with a new perspective of comment analysis. Firstly, the paper uses the emotion analysis and opinion mining methods to process user data, and proposes a quantitative strategy for the difference of the consumer individual influences. Secondly, the paper designs a series of interactive visual representation methods, such as the thematic sentiment ripple graph and the comment comparison view. Then, a multi-dimensional correlation view is constructed to explore the factors that affect the generation and causes of negative comments, and their individual differences with dynamic interactive methods. Finally, three case studies are used to verify the effectiveness and practicality of the system, which can also be extended to comment data of other visual analysis fields.

     

/

返回文章
返回