散点图信息混淆的可视分析模型
Visual Analysis Model for Scatter Plot Information Overload
-
摘要: 信息混淆是指在有限的显示空间中,由于信息量密度不当,导致对信息的理解产生障碍.散点图作为最常见的数据展示手段,深受信息混淆困扰,需要进行信息混淆消除.从可视分析角度入手,提出一个对散点图信息混淆量化评估的混淆熵模型,并基于个体显著值模型和四分树结构提出了一个从内容和空间2个维度对散点图信息混淆进行消除的算法,对高低显著值数据分别处理和指定显示大小与布局位置,从展示和布局层面对散点图信息混淆进行消除.Abstract: Information overload refers to the difficulty in understanding information due to an inappropriate density of information in a limited display space. Scatter plots, being one of the most common data visualization methods, are particularly susceptible to information overload and require techniques to mitigate this issue. From the perspective of visual analysis, we put forward a clutter entropy model for quantitative evaluation of scatter plots information clutter, and propose an algorithm to eliminate scatter plots information clutter from the two dimensions of content and space based on individual significance model and quad tree structure. The high and low significance data are processed and the display size and layout position are specified respectively, and the scatter plots information clutter is eliminated from the display and layout level.