高级检索

基于GPU的并行自适应笛卡尔网格建模方法与仿真应用研究综述

Research on GPU-Based Parallel Adaptive Cartesian Grid Modeling Methods and Simulation Applications

  • 摘要: 自适应笛卡尔网格因其自适应性、正交性和可扩展性, 在仿真领域扮演着至关重要的角色. 本文首先对自适应笛卡尔网格的理论基础进行了全面的梳理, 包括网格分类、基于GPU的并行网格构建算法、网格离散化方案以及微分算子的模板设计等方面. 接着, 从静态模型和动态仿真两个维度, 对比分析了不同类型网格在空间复杂度以及构建算法在时间复杂度上的表现. 此外, 本文通过构建浅水波模拟、基于布尔运算的实体建模以及弹性体碰撞等多个实例, 充分展示了自适应笛卡尔网格在实际应用中的广泛适用性和巨大潜力. 最后文章对自适应笛卡尔网格技术的未来发展方向进行了展望, 指出了潜在的研究路径和挑战.

     

    Abstract: Adaptive Cartesian grids play a crucial role in simulation fields due to their adaptiveness, orthogonality, and scalability. This paper first provides a comprehensive review of the theoretical foundation of adaptive Cartesian grids, including grid classification, GPU-based parallel grid construction algorithms, grid discretization schemes, and template design for differential operators. Then, from the perspectives of static models and dynamic simulations, it compares and analyzes the performance of different grid types in terms of spatial complexity and the time complexity of grid construction algorithms. Furthermore, this paper demonstrates the broad applicability and great potential of adaptive Cartesian grids in practical applications by constructing several examples, including shallow water wave simulation, Boolean operation-based solid modeling, and elastic collision simulations. Finally, the paper looks ahead to the future development directions of adaptive Cartesian grid technology, highlighting potential research paths and challenges.
     

     

/

返回文章
返回