时空复用的路径空间滤波快速绘制算法
Spatiotemporal Reuse Path Space Filtering for Fast Rendering
-
摘要: 在以间接光照占据主导地位的场景中, 路径空间滤波方法可以用低样本采样获取较高质量的图像, 导致过多的关注空间相关性而忽略了时间相关性, 并且局部的路径重用在绘制镜面材质时会产生较强的像素间相关性. 鉴于此, 依托路径图方法, 利用时域以及空域中的样本以迭代的方式来改进场景中的辐射度估计, 提出一种时空复用的路径空间滤波快速绘制算法. 首先记录标准前向路径追踪中的信息, 提出基于抖动聚类的方式构建路径图, 通过为路径追踪中所记录的顶点位置添加随机偏移划分聚类, 可有效地消除镜面材质在绘制中产生的像素相关性; 然后提出时空聚合算子, 通过对聚类内部的信息进行聚合改进路径图的出射辐射度估计; 最后结合最终聚集进一步消除像素间的相关性, 使得输出图像能够与标准的蒙特卡罗降噪器相适配. 在以间接光照主导的室内场景下的实验结果表明, 所提算法能够在连续绘制场景时比路径图方法平均节省约42%的时间, 并且在对镜面材质进行绘制时, 能够获得更易于被标准蒙特卡罗降噪器处理的图像.Abstract: In scenes dominated by indirect lighting, path space filtering methods can achieve higher-quality images with low sample rates, but they primarily focus on spatial correlation while neglecting temporal correlation. Additionally, local path reuse can lead to strong pixel correlation when rendering specular materials. To address this issue, we propose a spatiotemporal reuse path space filtering method. Our method builds on the path graph framework and iteratively improves the radiance estimation in the scene by utilizing samples from both the spatial and temporal domains. Specifically, our method first records information from standard forward path tracing and constructs the path graph using a jittered clustering approach. This clustering is achieved by adding random offsets to the vertex positions recorded during path tracing, effectively eliminating the pixel correlation caused by specular materials. We then introduce a spatiotemporal aggregation operator, which aggregates information within the clusters to refine the radiance estimation of the path graph. Finally, we combine this with the Final Gather operator to further reduce inter-pixel correlation, making the output image compatible with standard Monte Carlo denoisers. In indoor scenes dominated by indirect illumination, experimental results demonstrate that the proposed algorithm achieves an average 42% time reduction compared to path graphs methods during continuous scene rendering, while producing images with specular materials that are more compatible with standard Monte Carlo denoisers.