高级检索

基于跨邻域注意力位移融合的多分辨率医学图像配准

Advanced cross-neighborhood attention for displacement fusion in multi-resolution medical image registration

  • 摘要: 传统的单分支深度配准模型通常在图像对之间建立隐性匹配关系. 虽然Transformer通过提取长程上下文交互信息克服卷积神经网络的限制, 但可能忽略局部细节, 导致基于卷积神经网络或Transformer的双分支模型难以充分地挖掘特征间的显式映射关系. 为了克服上述缺陷, 提出一种基于跨邻域注意力位移融合的三分支医学图像配准模型CADReg, 实现多分辨率无监督形变配准. 首先通过跨邻域注意力显式地构建固定图像空间点特征与其对应的形变浮动图像邻域特征之间的映射关系, 有效地增强注意力机制与形变估计之间的协同作用, 提升配准准确性和效率; 然后解耦模块融合当前分辨率特征、深度互信息和具有长程依赖的特征, 更全面地挖掘特征间和特征内的深层信息, 使得聚合低层局部信息的同时传递高分辨率特征, 由粗到细地逐分辨率优化位移形变场. 在LONI LPBA40, IXI和OASIS这3个公开的脑部3D MRI数据集上的实验结果表明, 与主流的配准方法相比, CADReg获得的Dice相似系数分别为72.6%±1.3%, 76.8%±2.4%和89.6%±1.4%, 结构相似性分别为0.979±0.003, 0.954±0.003和 0.980±0.003, 能够更好地识别和理解感兴趣区域.

     

    Abstract: Traditional single-stream deep registration models generally rely on implicit feature matching between im-age pairs. While Transformers address the locality constraints of convolutional neural networks (CNNs) by capturing long-range contextual dependencies, they often underrepresent fine-grained local details. Con-sequently, dual-stream architectures, whether CNN- or Transformer-based, struggle to effectively model explicit feature correspondences. To overcome these limitations, we propose CADReg, a triple-stream un-supervised deformable registration framework for multi-resolution of medical imaging, leveraging cross-neighborhood attention embedded displacement fusion. CADReg explicitly establishes mappings between spatial point features in the fixed image and corresponding neighborhood features within the de-formed moving image via cross-neighborhood attention. This strengthens the synergy between attention mechanisms and deformation estimation, enhancing both registration accuracy and efficiency. A subse-quent decoupling module integrates three complementary elements: current-resolution features, deep mu-tual information, and features encoding long-range dependencies. This fusion enables comprehensive ex-traction of inter-feature and intra-feature contextual information, simultaneously aggregating low-level lo-cal details and propagating high-resolution structural cues to progressively refine deformation fields in a coarse-to-fine manner across resolutions. Extensive evaluations on three public 3D brain MRI datasets (LONI LPBA40, IXI and OASIS) demonstrate that CADReg consistently outperforms mainstream registra-tion methods, achieving Dice similarity coefficient of 72.6%±1.3%, 76.8%±2.4%, and 89.6%±1.4%, and structure similarity index of 0.979±0.003, 0.954±0.003, and 0.980±0.003, respectively. These results con-firm CADReg’s enhanced ability to identify and interpret clinically relevant regions of interest.

     

/

返回文章
返回