面向不规则边界的多视图可视化设计与推荐
Multiple-View Visualization Design and Recommendation for Irregular Boundary
-
摘要: 多视图可视化推荐旨在自动生成和评估多视图设计, 并向用户推荐合适的方案. 针对当前方法在不规则边界场景下适应性不足且缺乏对数据本身特性的关注等问题, 提出一个面向不规则边界的数据驱动多视图可视化自动生成与推荐框架. 首先, 通过数据信息推荐模块实现高质量数据的选择; 其次, 构建适应不规则边界的布局生成模块, 在复杂空间约束下完成自动布局生成; 再次, 引入数据指导的匹配优化模块, 最大化信息效用并实现数据与布局的智能匹配; 最后, 将上述三个模块集成于一个可视化系统中, 并通过案例分析、量化实验和用户调研验证其在不规则边界场景下的推荐效率与交互性能. 结果表明, 该框架有效拓展了传统多视图可视化设计的应用边界, 显著提升了不规则边界下的设计效率与质量.Abstract: Multiple-view visualization recommendation aims to automatically generate and evaluate multi-view de-signs, and recommend suitable solutions to users. To address the limitations of existing methods in handling irregular boundary scenarios and their insufficient consideration of data characteristics, this study propos-es a data-driven framework for the automatic generation and recommendation of multiple-view visualiza-tions tailored to irregular boundaries. First, a data information recommendation module is designed to se-lect high-quality data based on biased entropy-based recommendations. Second, a layout generation mod-ule adapted to irregular boundaries is developed to achieve automated layout construction under complex spatial constraints. Third, a data-guided matching optimization module is introduced to maximize infor-mation utility and enable intelligent alignment between data paths and layouts. Finally, these three modules are integrated into a user-friendly visualization system, where case studies, quantitative experiments, and user evaluations are conducted to validate the framework’s effectiveness. Results show that the proposed framework extends the application scope of traditional multiple-view visualization design and improves both efficiency and quality in irregular boundary scenarios.