基于杜邦分析与大模型驱动的交互式财务数据决策支持可视分析
Interactive Financial Data Decision Support Visual Analysis Based on DuPont Analysis and LLM
-
摘要: 高效的财务分析对于财务报表使用者获得洞察并支持其金融决策至关重要. 针对财务报表中多维复杂数据难以快速提取并理解关键维度的问题, 提出一种融合杜邦分析与大语言模型的智能可视分析方法. 该方法以解析报表为起点, 提取关键财务指标; 通过杜邦分析对指标进行拆解, 构建财务分析路径; 结合大语言模型, 生成趋势洞察与可视化视图, 辅助识别数据背后的关系与变化. 在此基础上设计并实现了一个原型系统FinDecipher进行方法验证. 通过该方法对上市公司财务数据进行案例分析, 基于交互式分析与大模型辅助洞察支持定位财务异常、识别关键驱动因素. 结果表明, FinDecipher能够提升用户对财务数据的理解和决策的准确性, 展现了所提出方法在实际应用中的可行性, 及其在金融科技中的应用潜力.Abstract: Efficient financial analysis is essential for extracting insights from financial statements and supporting decision-making. To address the challenge of interpreting complex financial data, we propose an intelligent visual analysis method combining DuPont analysis and large language models. Our approach extracts key financial metrics, decomposes them via DuPont analysis, and leverages LLMs to generate insights and visualizations, helping users identify trends and anomalies. We implement a prototype system, FinDecipher, and evaluate it on real-world financial data. Results show that FinDecipher improves financial comprehension and decision accuracy, demonstrating its practical feasibility and potential in fintech applications.