高级检索

三维高斯溅射数据压缩技术的改进

Improvements in Compression Techniques for 3D Gaussian Splattering Data

  • 摘要: 三维高斯溅射(3D Gaussian Splatting, 3DGS)是新视图合成领域中的新技术, 针对三维高斯溅射技术合成的场景存储空间大的问题, 提出了一种高效的压缩方法.首先, 修改原本的自适应密度控制策略, 考虑随着迭代次数的增加, 逐步增强梯度的权重, 更精准的控制密度.然后, 利用敏感性感知向量聚类对高斯点的多个属性进行压缩, 如颜色特征, 协方差矩阵和不透明度参数.最后, 对极其紧凑且颜色、形状和不透明度参数相似度高的小高斯点进行合并, 以进一步优化存储空间.通过在多个数据集上的实验证明, 提出的方法相较于3DGS在存储空间上达到了平均39.5倍的压缩比, PSNR平均提升了0.307dB.

     

    Abstract: 3D Gaussian Splatting (3DGS) is an emerging technology in novel view synthesis. To address the large storage space required by synthesized scenes, this work proposes an efficient compression method. The original adaptive density control strategy is modified to enhance the gradient weight progressively with increasing iterations, allowing for more precise density control. Sensitivity-aware vector clustering compresses multiple attributes of Gaussian points, including color, covariance matrices, and opacity. Finally, small Gaussian points with high similarity in color, shape, and opacity are merged to optimize storage further. Experiments across multiple datasets demonstrate that the proposed method achieves an average compression ratio of 39.5 times compared to the original 3DGS, with an average increase of 0.307 dB in PSNR.

     

/

返回文章
返回