高级检索

基于多特征融合神经衰减场的口腔全景图像三维重建

Multi-Feature Fusion Based Neural Attenuation Field for Sparse-View CBCT Reconstruction

  • 摘要: 口腔医学影像领域中,数字化X射线全景摄影因操作便捷、成本低廉及辐射剂量小而备受青睐,但在口腔三维结构呈现方面存在局限;锥形束计算机断层扫描虽能提供高精度的三维视图,却伴随更高的辐射风险与经济成本。基于二维全景图像准确地重建三维口腔结构具有重要的临床意义,因此提出一种由3个模块组成的基于多特征融合的神经衰减场的口腔全景图像三维重建方法MFF-NAF。多特征融合模块提取三维点的位置特征、像素对齐特征和体素对齐特征,拼接形成采样点集的特征集合,学习场景的密度分布和几何结构;密度估计模块利用特征线性调制机制动态地调节激活函数的权重和偏置,捕捉不同患者之间的解剖结构一致性;优化模块进一步细化重建细节,提升重建精度。在2个自建数据集上共160例案例与6种方法进行实验的结果表明,在三维结构重建任务中,MFF-NAF在可接受参数量规模下,其中PSNR提升0.73–3.98 dB,SSIM提升0.53–20.66个百分点和DICE提升1.41–14.28个百分点。

     

    Abstract: In the field of oral imaging, digital panoramic X-ray (PX) is widely used for its convenience, low cost, and low radiation dose. However, it remains limited in representing the depth and complexity of three-dimensional (3D) oral structures. In contrast, Cone-Beam Computed Tomography (CBCT) provides high-precision 3D visualization but entails higher radiation exposure and greater economic cost. To address this gap, we propose MFF-NAF, a multi-feature fusion–based neural attenuation field method for 3D reconstruction from 2D panoramic images. MFF-NAF integrates a multi-feature fusion module that extracts and concatenates 3D point positional, pixel-aligned, and voxel-aligned features and learn the scene’s density distribution and geometry structure. A density estimation module employs feature-wise linear modulation to dynamically adjust the weights and biases of the activation functions, enabling the capture of anatomical consistency across patients. Furthermore, an optimization module refines structural details to enhance reconstruction accuracy. Experiments on two in-house datasets comprising 160 cases and six comparative methods demonstrate that, under an acceptable parameter budget, MFF-NAF achieves quantitative improvements of 0.73–3.98 dB in PSNR, 0.53–20.66 percentage points in SSIM, and 1.41 – 14.28 percentage points in DICE, outperforming existing methods in 3D oral structure reconstruction.

     

/

返回文章
返回