高级检索

基于不变性体素空间二值编码的三维点云局部特征描述符

3D Point Cloud Local Feature Descriptor based on Binary Encoding in Invariant Voxel Space

  • 摘要: 点云局部特征描述在三维视觉领域是一个基础但又有挑战的任务. 现有点云特征描述符主要为浮点型特征,存在维度冗长、匹配和存储效率低的问题. 鉴于此, 提出一种不变性体素空间二值编码(binary encoding in invariant voxel space, BEIVS)描述符. 首先, 在维持旋转不变性的前提下充分挖掘点云在欧几里得空间和属性空间的几何信息, 将局部点云投影到局部参考系和不变性距离属性空间; 然后对2类空间中的点云进行体素化, 提出单源属性和跨源属性的体素属性二值测试方法, 充分解码2类空间的互补几何信息; 最后提出信息熵引导的位选择方法, 在去除干扰位的同时保留信息丰富的位, 形成最终BEIVS描述符. 在B3R, RESSO-室内和RESSO-室外3个数据集上的实验结果表明, BEIVS在所有数据集上均为表现最优, 甚至超越已有浮点型描述符; 其召回率与精度曲线下面积值分别为0.999, 0.047和0.193, 验证了该方法的有效性.

     

    Abstract: The local feature description of point clouds is a fundamental but challenging task in the fields of image and vision. The existing descriptors are mainly real-valued features, which have problems such as lengthy dimensions, low matching and storage efficiency. In view of this, this paper proposes a binary encoding in invariant voxel space descriptor. Firstly, while maintaining rotational invariance, in order to fully exploit the geometric information of point clouds in Euclidean space and attribute space, we project the local point cloud into a local reference frame and invariant distance attribute space. Then, we voxelized the point clouds in two types of spaces and proposed binary voxel attribute testing methods for single source attributes and cross source attributes, fully decoding the complementary geometric information of the two types of spaces. Finally, an information entropy guided bit selection method is proposed to remove interfering bits while retaining rich information bits, forming the final descriptor. The experimental results of B3R, RESSO-indoor, and RESSO-outdoor datasets show that BEIVS performs the best in all datasets, surpassing existing real-valued descriptors, with recall and accuracy curve AUC(the area under the recall-precision curve) values of 0.999, 0.047, and 0.193. The effectiveness of the method is verified.

     

/

返回文章
返回