高级检索

基于多边形控制网的通用NURBS曲面

GNURBS Surfaces On Arbitrary Polygon Control Grid

  • 摘要: 广义非均匀有理B样条(GNURBS)是一种创新的几何造型技术, 它将NURBS的概念扩展到能够处理任意拓扑控制网. 针对传统的GNURBS方法仅支持全四边形控制网, 并且要求每个面的对边节点距相同, 造型能力有限的问题, 提出一种GNURBS表示方法, 允许处理多边形控制网, 且多边形边的节点距可以不同. 首先, 由Bézier提取得到分片双三次Bézier曲面; 然后, 将部分面片升阶到双五次并为每个C0的边定义G1连续性约束条件; 最后, 分步求解约束优化问题得到最终曲面. 实验给出多个网格模型的曲面生成结果, 斑马纹图像表明所提方法为多边形控制网生成具有全局G1连续性的样条曲面.

     

    Abstract: Generalized non-uniform rational B-splines (GNURBS) is a novel geometric modeling method that extends non-uniform rational B-splines to handle any topological control net. The existing GNURBS method only supports fully quadrilateral control nets and requires identical node spacing on opposite edges of each face, resulting in limited modeling capability. This article extends the GNURBS method to handle polygonal control nets, where the knot intervals for the edges of the polygon can be different. The method first generate initial bicubic Bézier patches from control net through Bézier extraction operation. Then degree of some patches is elevated to biquintic, with G1 continuity conditions defined for each C0 edge. Finally, the target surface is obtained by solving the constrained optimization problem in a stepwise manner. The experiment presents the surface generation results of multiple grid models. The zebra-stripe images demonstrate that the proposed method generates spline surfaces with global G1 continuity from polygonal control nets.

     

/

返回文章
返回