高级检索

BCodeVis:面向区块链智能合约的漏洞检测可视分析方法

BCodeVis: a Visual Analysis Method for Vulnerability Detection in Blockchain Smart Contracts

  • 摘要: 针对传统的区块链智能合约代码漏洞检测方法常见的误报和漏报率较高、检测结果缺乏直观性和分析过程缺少可解释性的问题, 提出了一种智能合约代码漏洞检测可视分析方法, 并设计实现了可视化分析工具BCodeVis. 所提方法基于CodeBERT构建多标签分类模型, 实现对智能合约中8种漏洞的有效检测; 设计多种视图使用户能够从宏观统计、中观分析和微观代码3个层面, 以可视交互方式探索漏洞检测模型性能, 并发现合约代码中的异常信息; 案例分析和用户评估结果表明, BCodeVis能够提升用户分析和处理区块链智能合约代码漏洞的能力, 为区块链平台的安全保障提供了一种有效的解决方案.

     

    Abstract: To address the issues of high false positives and false negatives, lack of intuitiveness in detection results, and insufficient interpretability in the analysis process, which are common in traditional blockchain smart contract code vulnerability detection methods, a visual analysis approach for smart contract code vulnerability detection is proposed, and BCodeVis, a visual analysis tool, is designed and implemented. The proposed method builds a multi-label classification model based on CodeBERT to effectively detect eight types of code vulnerabilities in smart contracts. The design of multiple views enables users to explore the performance of the vulnerability detection model and discover anomalies in contract code through visual interaction at three levels: macro statistics, meso analysis, and micro code. Case studies and user evaluation demonstrate that BCodeVis enhances users’ ability to analyze and address smart contract code vulnerabilities, providing an effective solution for the security of blockchain platforms.

     

/

返回文章
返回