高级检索

Pythagorean Hodograph C-曲线的插值方法

Interpolation using Pythagorean Hodograph C-Curves

  • 摘要: 为了充分应用平面参数曲线的复数表示方法和Pythagorean Hodograph(PH) C-曲线的几何特征, 提出在3种几何约束条件下四阶PH C-曲线的构造方法. 首先在给定G1 Hermite端点条件下, 将PH C-曲线构造问题转换为一个关于实变量的实一元二次方程求解问题; 然后对于给定单端C1约束条件, PH C-曲线的构造可以通过求解一个关于复变量的复一元二次方程得到; 最后在给定3个型值点条件下, PH C-曲线的构造可转化为一个复一元二次方程求解问题. 此外, 分别考虑3种情况下解的存在性问题, 并给出具体的实现算法. 应用所提方法对给定的若干平面数据点构造了插值曲线的实例,结果表明,所提出的3种构造方法可以将PH C-曲线应用于几何建模.

     

    Abstract: In this paper, we study the construction methods of cubic Pythagorean Hodograph(PH) C-curves under three geometric constraints, respectively. The key idea is to utilize the complex representation of planar parametric curves and the geometric characteristics of PH C-curves. Firstly, constructing a PH C-curve for any given G1 Hermite condition is revisited and converted into solving a real quadratic equation in real variables. Secondly, for a given one-endpoint C1 constraint, the PH C-curves can be constructed by solving a complex quadratic equation in complex variables. Finally, constructing PH C-curves for three planar points can be transformed into solving a complex quadratic equation. This paper considers the existence of solutions in each of the three cases and provides detailed algorithms. We construct several numerical examples of planar curve interpolation using the proposed methods, the results illustrate that the proposed methods can be applied in geometric modeling with PH C-curves.

     

/

返回文章
返回