高级检索

基于可微分体Splatting技术的高自由度体数据分类

High-Freedom Volume Data Classification Based on Differentiable Volume Splatting

  • 摘要: 传输函数是实现体数据分类的重要手段. 针对传统的传输函数设计方法需要用户在数据空间或图像空间参与烦琐的交互调整过程, 难以取得比较一致的体数据分类结果的问题, 提出一种基于可微分体Splatting技术的高自由度体数据分类方法. 首先利用基于UMAP和类MipMap的层级降维方法实现体素的保持空间拓扑特征的低维流形嵌入, 为用户提供体数据探索的降维视图; 然后在渲染视图中采用可微分体Splatting渲染器, 通过可微分足迹函数基于渲染结果反向推导体素对用户感兴趣区域的贡献; 最后结合敏感度分析、局部传输函数重建及一系列直观交互工具, 建立降维视图与渲染视图之间的视觉关联, 形成双域协同交互的“对偶视图”系统. 实验结果表明, 所提方法降维时间控制在3~5 s, 渲染帧率保持在60 帧/s以上, 相比传统方法有效提升了体数据分类的灵活性与可靠性.

     

    Abstract: Transfer functions play a crucial role in classifying volume data. However, traditional transfer function design methods require extensive user interactions and often yield inconsistent results. This paper presents a novel approach to volume data classification based on differentiable volume Splatting technology. First, a hierarchical dimensionality reduction method utilizing UMAP and MipMap-like techniques is employed to achieve low-dimensional manifold embeddings of voxels while preserving their spatial topological characteristics, providing users with a dimensionality reduction view for volume data exploration; then, a differentiable volume Splatting renderer is adopted in the rendering view, using differentiable footprint functions to inversely derive voxel contributions to user-defined regions of interest based on rendering outcomes; finally, sensitivity analysis, local transfer function reconstruction, and a series of intuitive interactive tools are integrated to establish visual associations between the dimensionality reduction view and rendering view, forming a “Dual View” system with coactive interactions between dual domains. Experimental results demonstrate that the proposed method achieves dimensionality reduction within 3 s to 5 s while maintaining a rendering frame rate above 60 frames/s, and effectively enhances both the flexibility and reliability of volume data classification compared to traditional methods.

     

/

返回文章
返回