KLMVis: 基于知识图谱的检索增强语言模型可视分析系统
KLMVis: Knowledge Graph-Based Retrieval Augmented Language Model Visual Analysis System
-
摘要: 当前, 检索增强生成框架已成为提升大型语言模型性能的重要技术, 其通过整合多样的外部知识源, 有效地缓解了大型语言模型知识更新滞后和领域知识匮乏的问题. 然而, 在实现检索知识与用户需求精准对齐, 以及准确地衡量外部知识对生成内容的增强作用等方面, 该框架仍面临挑战. 为此, 提出一个可视分析系统——KLMVis, 旨在优化基于知识图谱的检索增强流程, 提高语言模型输出的可解释性. 该系统提供直观的界面, 使用户能有效地探索知识图谱、选择相关证据, 并参与到知识检索过程中; 同时, 配备的多款可视化组件辅助用户做出审慎的证据选择, 并且深化用户对模型推理逻辑的理解. 最后对2个规模和类型不同的知识图谱进行案例分析和用户实验, 证明了KLMVis在提升检索质量和效率方面表现优异, 能够有效地帮助用户评估增强后的模型输出.Abstract: Currently, retrieval-augmented generation frameworks have increasingly become an important technology for enhancing the performance of large language models. By integrating various external knowledge sources, they effectively mitigate the issues of outdated knowledge and lack of domain-specific information in large language models. However, challenges persist in aligning retrieved knowledge with user needs and evaluating how external knowledge contributes to generated content within these frameworks. To address this, we introduce KLMVis—a visual analysis system designed to optimize the process of knowledge graph-based retrieval augmentation and to improve the interpretability of language model outputs. This system offers an interface allowing users not only to explore knowledge graphs but also select relevant evidence and engage actively in the retrieval process. Additionally, with its multiple visualization components, it aids users in making more prudent evidence selections while deepening their understanding of the model's decision-making logic. Finally, upon conducting two usage scenarios and a user study on two distinct knowledge graphs, we demonstrate that KLMVis excels in improving retrieval efficiency, assisting users in evaluating the augmented outputs.