高级检索
贾勇刚, 闫青云 , 赵玺. 质心投票与相关性驱动的单幅图像模型配准[J]. 计算机辅助设计与图形学学报. DOI: 10.3724/SP.J.1089.2024-00384
引用本文: 贾勇刚, 闫青云 , 赵玺. 质心投票与相关性驱动的单幅图像模型配准[J]. 计算机辅助设计与图形学学报. DOI: 10.3724/SP.J.1089.2024-00384
Jia Yonggang, Yan Qingyun, Zhao Xi. Centroid Voting and Correlation-Driven Model Registration for Single Image[J]. Journal of Computer-Aided Design & Computer Graphics. DOI: 10.3724/SP.J.1089.2024-00384
Citation: Jia Yonggang, Yan Qingyun, Zhao Xi. Centroid Voting and Correlation-Driven Model Registration for Single Image[J]. Journal of Computer-Aided Design & Computer Graphics. DOI: 10.3724/SP.J.1089.2024-00384

质心投票与相关性驱动的单幅图像模型配准

Centroid Voting and Correlation-Driven Model Registration for Single Image

  • 摘要: 传统的单幅图像模型配准方法未能充分考虑由深度估计得到的点云具有密度不均、物体质心距离点云较远的特点, 也未能充分挖掘物体点云与归一化点云间的相关性, 影响了配准结果的精度. 为此, 设计一个新的物体特征提取网络, 提出一种基于质心投票和点云间相关性的模型配准方法. 首先对点云进行最远点采样; 然后利用物体局部对其质心具有指向性的特点, 通过局部特征回归采样点相对质心的偏移向量; 利用共享权重的多层感知机挖掘物体点云与归一化点云间匹配点的相关性, 同时提出一种关键点自监督损失函数提升权重预测的可靠性. 在ScanNet25k数据集上的实验结果表明, 与当前主流方法ROCA相比, 所提方法的任务准确率提高了8.2个百分点 .

     

    Abstract: Model registration methods for single-image normally compute the model configuration based on the point clouds estimated from images, which have uneven density, and long distances from the centroids to the points. Existing methods have failed to fully consider these characteristics of the estimated point clouds, and do not consider the correlations between original object point clouds and normalized point clouds. To address these issues, we design a novel object feature extraction network and propose a model registration method based on centroid voting and correlations between point clouds. First, we apply farthest point sampling to the point clouds. Then, leveraging the directional nature of the object’s local features towards its centroid, we employ local feature regression to estimate the relative displacement vector of the sampling point concerning the centroid. Furthermore, a multi-layer perceptron with shared weights is used to explore correlations between matching points in objects and normalized point clouds. Simultaneously, a self-supervised loss function for key points is introduced to enhance the reliability of weight predictions. Experimental results on the ScanNet25k dataset demonstrate that the proposed method achieves an 8.2 percentage point(pp) improvement in task accuracy compared to the current state-of-the-art ROCA.

     

/

返回文章
返回