高级检索

混合多边形坐标

Blended Polygon Coordinates

  • 摘要: 为了解决混合坐标依赖于剖分方法的问题, 提出一种重心坐标构造方法——混合多边形坐标. 首先对任意输入多边形Ω进行三角剖分, 并根据剖分结果构造混合多边形, 包括点多边形、边多边形和剖分三角形; 然后在Ω内任取一个计算点, 并找到该点对应的混合多边形; 再分别计算该点关于混合多边形的重心坐标和混合函数, 混合多边形顶点关于剖分顶点的重心坐标, 以及剖分顶点关于Ω的重心坐标; 最后将所有计算结果复合后, 得到计算点关于Ω的混合多边形坐标. 根据理论推导, 证明了混合多边形坐标在任意多边形内部满足线性重构性、单位分解性、拉格朗日性、非负性以及光滑性, 并且至少具备C1连续. 通过重心坐标的函数分布图、不同剖分方法的对比和图像变形中的应用, 验证了混合多边形坐标不仅可以解决混合坐标、调和坐标和局部坐标存在的问题, 而且在光滑性、非负性以及变形效果等方面, 比其他重心坐标具有明显优势.

     

    Abstract: To address the issue of Blended barycentric coordinates being dependent on the triangulation method, proposes a method for constructing barycentric coordinates——Blended Polygon coordinates. First, we triangulate any input polygon Ω and then construct blended polygons based on the triangulation results, including vertex polygons, edge polygons, and triangulated triangles. Then, we randomly select a calculation point inside Ω and find the blended polygons that correspond to that point. Next, we calculate the barycentric coordinates and blending functions of the point with respect to the blended polygons, the barycentric coordinates of the blended polygon vertices with respect to the triangulation vertices, and the barycentric coordinates of the triangulation vertices with respect to Ω. Finally, we combine all the calculated results to obtain the blended polygon coordinates of the calculation point with respect to Ω. According to theoretical derivation, Blended Polygon coordinates within any polygon satisfy the properties of linear reproduction, partition of unity, the Lagrange, non-negativity and smoothness, and they achieve at least C1 continuity. Through the functional distribution diagram of barycentric coordinates, the comparison of different triangulation methods, and the application in image deformation, it has been verified that Blended Polygon coordinates not only address the problem of Blended barycentric coordinates, Harmonic coordinates and Local barycentric coordinates but also have obvious advantages over other barycentric coordinates in terms of smoothness, non-negativity, and deformation effects.

     

/

返回文章
返回