高级检索

G2 连续Lupaş q-Beta样条曲线的几何构造方法

Geometric Construction Method of G2 Lupaş q-Beta Spline Curves

  • 摘要: Lupaş q-Bézier曲线是一类以有理函数作为基函数的广义Bézier曲线. 为了增强组合Lupaş q-Bézier曲线的局部形状调控能力, 提出G2连续Lupaş q-Beta样条曲线的几何构造方法. 首先根据Lupaş q-Bézier曲线的端点性质和Beta约束条件, 推导出组合曲线G2连续的充要条件, 并由几何算法构造出在拼接点处G2连续的Lupaş q-Beta样条曲线; 然后分别从代数和几何角度, 讨论形状参数对Lupaş q-Beta样条曲线形状的影响. G2连续的Lupaş q-Beta样条曲线优于依赖整体参数分割的C1G2连续Lupaş q-Gamma样条曲线; 数值实例结果表明, 与经典的Beta样条曲线相比, Lupaş q-Beta样条曲线更具造型优势和灵活性.

     

    Abstract:  Lupaş q-Bézier curves are a family of generalized Bézier curves with rational function as the basis function. To enhance the local shape control capabilities of composite Lupaş q-Bézier curves, a geometric construction method for G2 continuous Lupaş q-Beta spline curves is proposed. According to the endpoint properties of Lupaş q-Bézier curve and the Beta constraint conditions, the necessary and sufficient conditions for the G2 continuity of the combined curve are deduced. Then, G2 Lupaş q-Beta spline curves at the splicing point are constructed by geometric algorithm. Moreover, we discuss the influence of shape parameters on the shape of Lupaş q-Beta spline curve from the perspective of algebra and geometry, respectively. G2 Lupaş q-Beta spline curves surpass C1G2 Lupaş q-Gamma spline curves, which dependened on global parameter segmentation. Numerical examples results indicate that, compared to classical Beta spline curves, Lupaş q-Beta spline curves offer greater modeling advantages and flexibility.

     

/

返回文章
返回