面向逆渲染的室内场景光源建模
Modeling Emitters in Indoor Scenes for Inverse Rendering
-
摘要: 物体的逆向渲染旨在通过多视图图像恢复物体的几何形状和表面材质. 最近的方法通过使用神经网络表示物体材质, 并通过基于物理的渲染过程优化网络参数, 在该任务上展现出了卓越的性能表现. 这些方法通常假设光源位于无限远处. 然而, 在具有复杂光照条件的室内场景中, 这种假设很少成立. 为了解决这些问题, 本论文引入了一种新的光照表示方法, 用于模拟室内场景中的随空间坐标变化的高频光照效果. 本论文使用一组光源实现该光照表示, 并从输入图像检测光源位置. 考虑到复杂光源是产生镜面视觉效果的主要原因, 本论文在基于物理的渲染过程中显式引入本文提出的光照表示, 提高了渲染模型表达镜面效果的能力, 有效减轻逆向渲染过程中的歧义性. 实验表明, 本文方法在真实和合成数据集上达到了逆渲染的最新性能, 并能够产生逼真的重光照结果.Abstract: Inverse rendering of objects aims to recover the object geometry and surface materials from multi-view images. Recent methods have demonstrated impressive performance on this task by representing object materials with neural networks and optimizing the network parameters through physically based rendering, where they typically assume that the lighting is infinitely far away. However, this assumption seldomly holds in indoor scenarios that exhibit complex illumination. To resolve these problems, we introduce a novel illumination representation to model the spatially-varying and high-frequency lighting in indoor scenes, which is implemented as a set of emitters that are automatically localized based on input images. These emitters are the main cause of specular visual effects. Explicitly incorporating emitters in the Monte Carlo sampling greatly improves the ability to capture the specular effects, thus effectively alleviating the ambiguity in the inverse rendering process.