高级检索

基于语义分离和特征融合的人脸编辑方法

An Independent Semantic and Fused Latent Model for Local Face Editing

  • 摘要: 人脸图像编辑模型中的语义属性之间有较强的关联性, 编辑其中一种语义可能导致其他语义属性以及非编辑区域的内容改动. 为了提升用户的编辑体验, 实现对人脸图像细节更为精确的编辑, 提出一种在图像域上语义分离和特征融合(ISFL)的人脸图像编辑模型. 首先使用图像掩模将人脸图像的各个语义分离, 并将人脸语义组织成一个层次化的树状结构;然后通过ISFL实现对图像语义的局部分离和全局融合, 用户可通过掩模单独编辑图像中不同语义的结构和外观;最后使用基于编码器和基于优化2种方式优化生成图像的细节部分. 在CelebAMask-HQ数据集上的实验结果表明, 所提出的图像编辑方法可以得到更加真实、细节更加丰富的图像.

     

    Abstract: There is a strong correlation among semantic attributes in face editing models, editing one attribute may unintentionally alter other semantic attributes or affect unrelated regions. To enhance the user editing experience and achieve higher precision in facial detail editing, this paper proposes a face editing model based on semantic separation and feature fusion in the image domain, termed independent semantic and fused latent (ISFL). Firstly, facial semantics are disentangled using image masks and organized into a hierarchical tree structure. Next, ISFL enables both local separation and global fusion of image semantics, allowing users to independently edit the structure and appearance of specific semantic attributes through masks. Additionally, two methods, encoder-based and optimization-based, are employed to refine the details in generated images. Experimental results on CelebAMask-HQ dataset demonstrate that ISFL can produce more realistic and detail-rich images.

     

/

返回文章
返回