高级检索

数字人面部表情迁移: 从人脸表示到表情迁移综述

Digital Human Facial Expression Transfer: A Review from Face Representation to Expression Transfer

  • 摘要: 综述了数字人面部表情迁移技术的研究进展, 包括三维人脸表示、面部成分提取及表情迁移方法三个关键技术环节. 回顾了从显式三维可变形模型到隐式神经网络表达的技术演进, 分析了表情与身份信息分离、跨维度表情映射等关键挑战. 指出当前技术主要面临三维模型表现力有限、特征提取易受环境干扰、跨主体适应性不足等问题. 基于对大量文献的分析评估, 提出应发展具备更强局部表达能力的可变形人脸建模方法, 探索基于卷积隐式神经网络的精确表情分离技术, 以及融合隐式神经网络与非线性人脸表示的表情迁移框架. 这些创新方向有助于简化迁移流程, 增强系统泛化能力, 最终实现更自然、高效的数字人面部表情生成, 推动数字人技术在军事训练、教育教学、心理舒缓与影视娱乐等领域的广泛应用.

     

    Abstract: This review systematically examines the research progress in digital human facial expression transfer technologies, focusing on three key components: 3D face representation, facial feature extraction, and expression transfer methods. The paper traces technological evolution from explicit 3D morphable models to implicit neural network representations, analyzing critical challenges including expression-identity disentanglement and cross-dimensional expression mapping. Current technical limitations are identified as restricted expressiveness of 3D face models, susceptibility of feature extraction to environmental interferences, and insufficient cross-subject adaptability. Based on comprehensive literature analysis, the review proposes developing deformable face modeling methods with enhanced local expressiveness, exploring precise expression disentanglement techniques based on convolutional implicit neural networks, and creating expression transfer frameworks that integrate implicit neural networks with nonlinear face representations. These innovative directions will help simplify transfer processes, strengthen system generalization capabilities, and ultimately achieve more natural and efficient digital human facial expression generation, advancing digital human technology applications across military training, education, psychological relief, and entertainment industries.

     

/

返回文章
返回