高级检索

语义可控的三维人体体型生成

Semantically Controllable 3D Human Body Shape Generation

  • 摘要: 为了实现语义可控的SMPL人体体型生成, 提出一种采用虚拟测量模块优化SMPL体型参数的生成方法. 首先在SMPL模型上预先定义特征点; 然后对T-姿势下的SMPL模型进行虚拟测量, 获取人体测量参数; 最后通过最小化目标函数优化SMPL的体型参数. 在此基础上, 进一步探讨人体测量参数与SMPL体型参数在体型空间中的变化关系, 将测量参数的变化与体型参数建立语义可控的关联, 实现了通过修改体型参数控制SMPL模型单项测量参数的变化, 解决了对SMPL体型进行精细控制的问题. 实验结果表明, 以身高、会阴高、臂展、胸围、腰围和臀围等人体测量参数作为约束, 所提方法在保持多项人体测量参数输入约束的同时, 生成的模型以虚拟测量得到的结果与输入值的误差更小, 4组男性和4组女性的虚拟测量结果误差不超过输入值结果误差的50%. 该方法也适用于SMPL-H和SMPL-X模型.

     

    Abstract: To achieve semantically controllable SMPL body shape generation, a method is proposed to optimize the SMPL shape parameters using an extended virtual measurement module. First, the feature points are predefined on the SMPL model. Then, the anthropometric measurements are obtained by virtual measurement of the SMPL model in T-pose. Finally, the SMPL shape parameters are optimized by minimizing the objective function. Based on this, the paper further explores the relationship between anthropometric measurements and SMPL shape parameters in the shape space, and establishes a semantically controllable association between the variation of anthropometric measurements and shape parameters to control the changes of single anthropometric measurement of SMPL model by modifying shape parameters, thus solving the problem of fine-grained control of SMPL shape. The experimental results show that the proposed method maintains several anthropometric measurements inputs such as height, perineal height, arm span, chest circumference, waist circumference, and hip circumference as constraints results in the error of the measurements of generated model is smaller than that of the input values, not exceeding 50% of the error of the input value showing by 4 groups of males and 4 groups of females. In addition, this method is also applicable to SMPL-H and SMPL-X models.

     

/

返回文章
返回