高级检索
叶永竞, 许逸文, 张子豪, 胡磊, 夏时洪. 虚拟人运动控制策略学习方法的研究进展与展望[J]. 计算机辅助设计与图形学学报. DOI: 10.3724/SP.J.1089.2024-00168
引用本文: 叶永竞, 许逸文, 张子豪, 胡磊, 夏时洪. 虚拟人运动控制策略学习方法的研究进展与展望[J]. 计算机辅助设计与图形学学报. DOI: 10.3724/SP.J.1089.2024-00168
Yongjing Ye, Yiwen Xu, Zihao Zhang, Lei Hu, Shihong Xia. Recent Advances on Motion Control Policy Learning for Humanoid Characters[J]. Journal of Computer-Aided Design & Computer Graphics. DOI: 10.3724/SP.J.1089.2024-00168
Citation: Yongjing Ye, Yiwen Xu, Zihao Zhang, Lei Hu, Shihong Xia. Recent Advances on Motion Control Policy Learning for Humanoid Characters[J]. Journal of Computer-Aided Design & Computer Graphics. DOI: 10.3724/SP.J.1089.2024-00168

虚拟人运动控制策略学习方法的研究进展与展望

Recent Advances on Motion Control Policy Learning for Humanoid Characters

  • 摘要: 虚拟人运动合成是虚拟现实和角色动画领域中的关键问题之一, 旨在合成真实自然且能响应用户输入信息的运动序列. 虚拟人运动控制策略根据用户输入约束解算关节力矩, 并依托现有的物理引擎更新虚拟人状态, 合成的运动序列在满足用户输入约束的同时可以满足物理真实性. 近年来, 深度强化学习技术因其在序列决策和交互任务中的出色表现而备受研究者的关注, 为基于物理引擎的虚拟人控制策略学习提供了新途径. 首先回顾了虚拟人建模仿真和强化学习的理论基础, 以及应用于单一虚拟人运动控制策略学习的主流深度强化学习算法. 其次, 基于强化学习基本元素, 介绍了虚拟人运动控制问题研究工作的应用设计. 最后, 总结了当前研究现状与面临的挑战, 展望虚拟人运动控制策略学习方法的未来发展趋势.

     

    Abstract: Motion synthesis for humanoid characters, aimed at generating realistic and natural motion sequences that can respond to user input, has been a long-lasting challenge in virtual reality and character animation. Motion control policies solve joint torques based on user input constraints, update the character state using existing physics engines, and synthesize motion sequences that satisfy user input constraints while ensuring physical realism. In recent years, deep reinforcement learning has attracted researchers' attention due to their outstanding performance in sequential decision-making and interactive tasks, offering a new avenue for learning control policies for humanoid characters based on physics engines. First, the theoretical basis of character modeling, simulation and reinforcement learning is reviewed, as well as the mainstream deep reinforcement learning algorithms applied to single humanoid character motion control policy learning. Subsequently, based on the fundamental elements of reinforcement learning, the application design of research on humanoid character motion control policy learning is introduced. Finally, recent research advances and challenges faced are summarized, and the future development trends of learning methods for humanoid character motion control strategies are discussed.

     

/

返回文章
返回