高级检索
刘陈一, 李杰, 沈天舒. 面向多属性文档的精细化语义模式交互探索方法[J]. 计算机辅助设计与图形学学报. DOI: 10.3724/SP.J.1089.2024-00108
引用本文: 刘陈一, 李杰, 沈天舒. 面向多属性文档的精细化语义模式交互探索方法[J]. 计算机辅助设计与图形学学报. DOI: 10.3724/SP.J.1089.2024-00108
Chenyi Liu, Jie LI, Tianshu Shen. Refined Semantic Pattern Interaction Exploration for Multi-Attribute Documents: A Study on Subspace Topic Modeling and Visual Analysis[J]. Journal of Computer-Aided Design & Computer Graphics. DOI: 10.3724/SP.J.1089.2024-00108
Citation: Chenyi Liu, Jie LI, Tianshu Shen. Refined Semantic Pattern Interaction Exploration for Multi-Attribute Documents: A Study on Subspace Topic Modeling and Visual Analysis[J]. Journal of Computer-Aided Design & Computer Graphics. DOI: 10.3724/SP.J.1089.2024-00108

面向多属性文档的精细化语义模式交互探索方法

Refined Semantic Pattern Interaction Exploration for Multi-Attribute Documents: A Study on Subspace Topic Modeling and Visual Analysis

  • 摘要: 现有的语义模式探索方式限制了对全局语义模式的理解, 少有研究关注保留上下文语义的精细化语义模式探索. 文中通过深度结合机器学习和可视化技术, 运用面向多属性文档的精细化语义模式可视分析方法, 使用户能够在灵活地分析不同属性下的精细化语义模式的同时感知全局语义模式. 首先引入表征重构网络, 得到包含多属性文档语义和属性信息的潜在向量, 使主题模型能够更好地识别子空间主题; 然后引入人在回路的语义模式可视分析方法, 开发了一套包括探索管理器、子空间投影仪和主题解释器的语义模式可视化系统, 支持用户选择表征重构的属性子空间, 交互探索语义模式, 并提供分析结果. 基于游戏评论数据集、美国新闻数据集和特朗普大选数据集, 采用主题多样性和主题一致性的指标与既有方法进行对比, 实验结果表明, 所提出的主题模型在主题建模上具有较好的泛用性和灵活性; 用户实验包括语义模式探索任务, 实验结果验证了所提方法和可视化系统在语义模式探索上的出色执行效率和有效性.

     

    Abstract: Existing approaches to semantic pattern exploration limit the comprehension of global semantic patterns, with few studies focusing on the fine-grained semantic pattern exploration that preserves contextual semantics. In this paper, this paper combine machine learning and visualization techniques in depth, employing a fine-grained semantic pattern visual analysis method for multi-attribute documents. This allows users to flexibly analyze fine-grained semantic patterns under different attributes while perceiving global semantic patterns. Firstly, this paper introduce a representation reconstruction network to obtain latent vectors that contain semantic and attribute information of multi-attribute documents, enabling the topic model to better identify subspace topics. Then, this paper introduce a human-in-the-loop semantic pattern visual analysis method and develop a semantic pattern visualization system that includes an exploration manager, a subspace projector, and a topic interpreter. This system supports users in selecting attribute subspaces for representation reconstruction, interactively exploring semantic patterns, and providing analysis results. Based on game review datasets, US news datasets, and Trump election datasets, this paper compare our proposed topic model with existing methods using topic diversity and topic coherence metrics. Experimental results show that the proposed topic model has good generalizability and flexibility in topic modeling. User experiments including semantic pattern exploration tasks verify the outstanding efficiency and effectiveness of the proposed method and visualization system in semantic pattern exploration.

     

/

返回文章
返回