高级检索
刘春晓, 曹越, 王成骅, 周子翔. 基于内容与风格双域改善的水下图像增强方法[J]. 计算机辅助设计与图形学学报. DOI: 10.3724/SP.J.1089.2024-00106
引用本文: 刘春晓, 曹越, 王成骅, 周子翔. 基于内容与风格双域改善的水下图像增强方法[J]. 计算机辅助设计与图形学学报. DOI: 10.3724/SP.J.1089.2024-00106
Chunxiao Liu, Yue Cao, Chenghua Wang, Zixiang Zhou. Underwater Image Enhancement Method withContent and StyleDual-domain Improvement[J]. Journal of Computer-Aided Design & Computer Graphics. DOI: 10.3724/SP.J.1089.2024-00106
Citation: Chunxiao Liu, Yue Cao, Chenghua Wang, Zixiang Zhou. Underwater Image Enhancement Method withContent and StyleDual-domain Improvement[J]. Journal of Computer-Aided Design & Computer Graphics. DOI: 10.3724/SP.J.1089.2024-00106

基于内容与风格双域改善的水下图像增强方法

Underwater Image Enhancement Method withContent and StyleDual-domain Improvement

  • 摘要: 水下图像增强技术对于海洋资源开发具有重要意义, 然而现有的水下图像增强方法难以应对现实世界复杂的水下环境, 尤其对于困难样本很难做出有效的增强. 针对以上问题, 本文提出了一种基于内容与风格双域改善的水下图像增强方法. 首先, 设计了一个简单有效的框架将水下图像解耦为内容特征与风格编码并重建. 对于内容域, 设计了双域自适应高频调整模块增强原始水下图像内容特征中的细节并抑制噪声; 对于风格域, 提出了建立风格库并在推理过程中匹配最优风格来实现风格的变换. 最后, 通过构建内容一致性损失和重建损失以监督模型完成水下图像的增强与重建. 实验结果表明, 在水下图像增强领域公开的UIEB数据集、EUVP数据集和RUIE数据集上, 本文方法的主观视觉效果和客观评价指标(PSNR、SSIM、UIQM和UCIQE)均优于已有方法, 尤其在增强困难样本方面展现了明显的优势.

     

    Abstract: Underwater image enhancement techniques are crucial for the development of marine resources. However, existing underwater image enhancement methods struggle to deal with the complex realities of underwater environments, especially in effectively enhancing challenging samples. To address these issues, we propose a novel method that leverages dual-domain improvements in content and style. Initially, a straightforward and effective framework is designed to decouple underwater images into content features and style codes, followed by reconstruction. For the content domain, a dual-domain adaptive high-frequency adjustment block is designed to enhance detail and suppress noise. For the style domain, we establish a style library that enables style transformation by matching the optimal style during inference. Finally, the model completes the enhancement and reconstruction of underwater images by utilizing a content consistency loss and a reconstruction loss for supervision. Experimental results on publicly available underwater image datasets such as UIEB, EUVP, and RUIE show that our method outperforms existing methods in both subjective visual effects and objective evaluation metrics (PSNR, SSIM, UIQM, and UCIQE). Especially, it demonstrates significant advantages in enhancing challenging samples.

     

/

返回文章
返回