高级检索
刘健力, 范洪硕, 聂涛, 余金桂, 王书亭, 夏兆辉. 基于高导热性能微结构的等几何拓扑优化[J]. 计算机辅助设计与图形学学报. DOI: 10.3724/SP.J.1089.2024-00097
引用本文: 刘健力, 范洪硕, 聂涛, 余金桂, 王书亭, 夏兆辉. 基于高导热性能微结构的等几何拓扑优化[J]. 计算机辅助设计与图形学学报. DOI: 10.3724/SP.J.1089.2024-00097
Jianli Liu, Hongshuo Fan, Tao Nie, Jingui Yu, Shuting Wang, Zhaohui Xia. Isogeometric Topology Optimization Based on Microstructures with High Thermal Conductivity[J]. Journal of Computer-Aided Design & Computer Graphics. DOI: 10.3724/SP.J.1089.2024-00097
Citation: Jianli Liu, Hongshuo Fan, Tao Nie, Jingui Yu, Shuting Wang, Zhaohui Xia. Isogeometric Topology Optimization Based on Microstructures with High Thermal Conductivity[J]. Journal of Computer-Aided Design & Computer Graphics. DOI: 10.3724/SP.J.1089.2024-00097

基于高导热性能微结构的等几何拓扑优化

Isogeometric Topology Optimization Based on Microstructures with High Thermal Conductivity

  • 摘要: 针对多尺度拓扑优化难以实现非规则设计域的结构设计等问题, 提出一种基于高导热性能微结构的等几何拓扑优化方法. 在微观尺度, 针对多尺度拓扑优化中常用的微结构优化其导热性能, 并通过调整导热系数权重预先设计出具有更优导热性能的结构, 在保证较高设计自由度的同时降低计算成本; 在宏观尺度, 以最小热柔度为优化目标构建基于优化后微结构的等几何拓扑优化数学描述模型, 结合灵敏度分析方案更新宏观设计变量得到最终多尺度结构, 在等几何分析中精确模型的基础上提高计算精度, 保证最终多尺度结构单元间的高阶连续性. 经典矩形和二维/三维半圆环散热结构的优化结果表明, 所提方法可得到导热柔度最大降低7.97%的多尺度结构, 有效地提高其导热性能; 适用于非规则结构的不同边界条件, 对复杂设计域的导热拓扑优化设计具有较好的通用性.

     

    Abstract: An isogeometric topology optimization method based on microstructures with high thermal conductivity is proposed in this paper. The thermal conductivity is optimized at the micro scale for a given initial microstructure, and the structure with optimized thermal conductivity is pre-designed by adjusting the weights of the thermal conductivity factors, which ensures a higher degree of design freedom and reduces the computational cost. The isogeometric topology optimization model of the based on optimized microstructure is constructed at the macro scale with the minimum thermal compliance as the optimization objective, which improves the computational accuracy on the base of the accurate model in the isogeometric analysis and ensures the high continuity of the final multiscale structure. Finally, the effectiveness and generalization of the proposed method are demonstrated by two-dimensional and three-dimensional arithmetic examples. The results show that the proposed method can effectively improve the thermal conductivity of multiscale structures and achieve the design of multiscale structures in irregular design domains.

     

/

返回文章
返回