高级检索

影子辅助的三维人体重建

3D Human Body Reconstruction with Shadow

  • 摘要: 光线投射至地面的人体影子可以为人体重建任务提供约束信息,有助于缓解单目图像中的深度歧义问题和自遮挡问题.为了重建三维人体模型,提出一种基于影子输入和深度神经网络的重建方法.首先搭建2个独立的卷积神经网络模块用于提取图像特征和影子特征,并估计对应的人体模型参数;然后建立一个可导投影算子(differentiable projection operator,DPO)对齐2个网络的输出;最后将DPO构建的损失函数应用于微调神经网络和直接优化输出.在Human3.6M合成影子数据集上的实验结果表明,与基线方法相比,微调神经网络的关节误差指标下降了1.4~4.9 mm;在自采集的一个含真实影子的3人2视角小规模数据集上的定性实验结果表明,直接优化的人体姿态更加接近原始图像.

     

    Abstract: Body shadow cast by lights on the ground can provide constraint information for human body reconstruction, which helps to alleviate the depth ambiguity and self-occlusion issues in a single image. In this paper, a deep neural network model based on shadow input is proposed for reconstructing 3D body mesh. First, two independent convolutional neural networks are constructed to respectively extract image feature and shadow feature, and then estimate corresponding body model parameters. Then, a differentiable projection operator (DPO) is formulated to align the outputs of two networks. The loss function built on DPO is applied in two scenarios, namely fine-tuning the neural network and directly refining reconstruction results. Experiments performed on Human3.6M with synthetic shadow showed that mean per joint position error of the fine-tuned network decreased from 1.4 mm to 4.9 mm compared with baseline methods. A small-scale dataset of 3 actors and 2 views with the real shadow is captured. Qualitative results on this dataset demonstrated that directly refined body pose better matches the original image.

     

/

返回文章
返回