Design and Applications of Triply Periodic Minimal Surfaces: A Survey
-
摘要: 三周期极小曲面是一种隐函数表示的代数曲面,具有许多优良的性质.增材制造技术的快速发展极大地增强了复杂几何与拓扑结构的制造能力,三周期极小曲面作为几何建模工具越来越受到关注.首先,从数学表达、性质、应用以及几何设计方法等方面对三周期极小曲面的研究现状进行介绍;其次,对三周期极小曲面在力学、传热传质、组织工程和声学等方面的性能及相关应用进行总结,从几何建模方法的角度对三周期极小曲面进行分类梳理,将现有工作分为规则单元法、参数单元法、区域拼接法以及整体优化法4类,对各方法特点进行分析;最后,结合实际应用对该领域面临的挑战进行总结,并展望未来工作与发展趋势.Abstract: Triply Periodic Minimal Surface is a kind of algebraic surface expressed by implicit function. The rapid development of additive manufacturing technology has greatly enhanced the manufacturing capabilities of complex geometries and topological structures, Triply Periodic Minimal Surface, as a powerful geometric modeling tool, has received more and more attention. Firstly, this paper introduces the current research status of Triply Periodic Minimal Surface in terms of mathematical expression, properties, applications, and geometric design methods. Secondly, the mechanical property, heat and mass transfer, tissue engineering and acoustics performance are summarized. The existing works related to Triply Periodic Minimal Surface are classified and combed from the perspective of geometric modeling methods. They are grouped into four categories: regular unit method, parametric unit method, region splicing method and overall optimization method. The characteristics of each method are analyzed. Finally, in accordance with practical applications, we summarized challenges and prospected future works in this field.
-
-
[1] Hu D Y, Wang Y Z, Song B, et al. Energy-absorption characteristics of a bionic honeycomb tubular nested structure inspired by bamboo under axial crushing[J]. Composites Part B: Engineering, 2019, 162: 21-32
[2] Nissen H U. Crystal orientation and plate structure in echinoid skeletal units[J]. Science, 1969, 166(3909): 1150-1152
[3] Almsherqi Z A, Landh T, Kohlwein S D, et al. Cubic membranes: the missing dimension of cell membrane organization[J]. International Review of Cell and Molecular Biology, 2009, 274: 275-342
[4] Seago A E, Brady P, Vigneron J P, et al. Gold bugs and beyond: a review of iridescence and structural colour mechanisms in beetles (Coleoptera)[J]. Journal of the Royal Society Interface, 2009, 6(suppl 2): S165-S184
[5] Galusha J W, Richey L R, Gardner J S, et al. Discovery of a diamond-based photonic crystal structure in beetle scales[J]. Physical Review E, 2008, 77(5): Article No.050904
[6] Schoen A H. Infinite periodic minimal surfaces without self-intersections[R]. Washington D C: NASA, 1970
[7] Benedicto A D, O’Brien D F. Bicontinuous cubic morphologies in block copolymers and amphiphile/water systems: mathematical description through the minimal surfaces[J]. Macromolecules, 1997, 30(11): 3395-3402
[8] Sadoc J F, Charvolin J. Infinite periodic minimal surfaces and their crystallography in the hyperbolic plane[J]. Acta Crystallographica Section A: Foundations of Crystallography, 1989, 45(1): 10-20
[9] Liu Ligang, Xu Wenpeng, Wang Weiming, et al. Survey on geometric computing in 3D printing[J]. Chinese Journal of Computers, 2015, 38(6): 1243-1267(in Chinese) (刘利刚, 徐文鹏, 王伟明, 等. 3D打印中的几何计算研究进展[J]. 计算机学报, 2015, 38(6): 1243-1267) [10] Do Carmo M P. Differential geometry of curves and surfaces: revised and updated second edition[M]. New York: Dover Publications Inc., 2016
[11] Han L, Che S. An overview of materials with triply periodic minimal surfaces and related geometry: from biological structures to self-assembled systems[J]. Advanced Materials, 2018, 30(17): Article No.1705708
[12] Nitsche J C. Lectures on minimal surfaces[M]. Cambridge: Cambridge University Press, 1989
[13] Hoffman J T. Level sets approximating minimal surfaces[OL]. [2021-09-14]. https://www.msri.org/publications/sgp/jim/geom/level/minimal/index.html
[14] Cvijović D, Klinowski J. The T and CLP families of triply periodic minimal surfaces. Part 1. Derivation of parametric equations[J]. Journal De Physique I, 1992, 2(2): 137-147
[15] Molnár E. On triply periodic minimal balance surfaces[J]. Structural Chemistry, 2002, 13(3/4): 267-275
[16] Hyde S T, Andersson S. A cubic structure consisting of a lipid bilayer forming an infinite periodic minimum surface of the gyroid type in the glycerolmonooleat-water system[J]. Zeitschrift Für Kristallographie-Crystalline Materials, 1984, 168(1/2/3/4): 213-220
[17] Schröder-Turk G E, Fogden A, Hyde S T. Bicontinuous geometries and molecular self-assembly: comparison of local curvature and global packing variations in genus-three cubic, tetragonal and rhombohedral surfaces[J]. The European Physical Journal B-Condensed Matter and Complex Systems, 2006, 54(4): 509-524
[18] Tenu V. Minimal surfaces as self-organizing systems: a particle spring system simulation for generating triply periodic minimal surface tensegrity structure[D]. London: UCL (University College London), 2009
[19] Rao C, Xu F, Tian L, et al. Bi-scale porous structures[C] //Proceedings of the SMI 2019 Fabrication & Sculpting Event (FASE). Vancouver: ISAMA Press, 2019: 73-76
[20] Akbari M, Mirabolghasemi A, Akbarzadeh H, et al. Geometry-based structural form-finding to design architected cellular solids[C] //Proceedings of ACM Symposium on Computational Fabrication. New York: Association for Computing Machinery Press, 2020: Article No.3
[21] Yan C Z, Hao L, Hussein A, et al. Evaluations of cellular lattice structures manufactured using selective laser melting[J]. International Journal of Machine Tools and Manufacture, 2012, 62: 32-38
[22] Yánez A, Cuadrado A, Martel O, et al. Gyroid porous titanium structures: a versatile solution to be used as scaffolds in bone defect reconstruction[J]. Materials and Design, 2018, 140: 21-29
[23] Khaderi S N, Deshpande V S, Fleck N A. The stiffness and strength of the gyroid lattice[J]. International Journal of Solids and Structures, 2014, 51(23/24): 3866-3877
[24] Abueidda D W, Abu Al-Rub R K, Dalaq A S, et al. Effective conductivities and elastic moduli of novel foams with triply periodic minimal surfaces[J]. Mechanics of Materials, 2016, 95: 102-115
[25] Liu P Q, Liu A, Peng H, et al. Mechanical property profiles of microstructures via asymptotic homogenization[J]. Computers & Graphics, 2021, 100: 106-115
[26] Ashby M F. Materials selection in mechanical design[M]. Oxford: Butterworth-Heinemann, 2005
[27] Wang L F, Lau J, Thomas E L, et al. Co-continuous composite materials for stiffness, strength, and energy dissipation[J]. Advanced Materials, 2011, 23(13): 1524-1529
[28] Al-Ketan O, Adel Assad M, Abu Al-Rub R K. Mechanical properties of periodic interpenetrating phase composites with novel architected microstructures[J]. Composite Structures, 2017, 176: 9-19
[29] Al-Ketan O, Abu Al-Rub R K. Multifunctional mechanical metamaterials based on triply periodic minimal surface lattices[J]. Advanced Engineering Materials, 2019, 21(10): Article No.1900524
[30] Slaughter V B. Method of using minimal surfaces and minimal skeletons to make heat exchanger components: US20080149299[P]. 2008-06-26
[31] Southall D, Le Pierres R, Dewson S J. Design considerations for compact heat exchangers[C] //Proceedings of ICAPP. Anaheim: ICAPP Press, 2008, Article No.8009
[32] Peng H, Gao F, Hu W. Design, modeling and characterization of triply periodic minimal surface heat exchangers with additive manufacturing[C] //Proceedings of the 30th Annual International Solid Freeform Fabrication Symposium–An Additive Manufacturing Conference. Austin: ETH-Zürich, 2019: 2325-2337
[33] Li W H, Yu G P, Yu Z B. Bioinspired heat exchangers based on triply periodic minimal surfaces for supercritical CO2 cycles[J]. Applied Thermal Engineering, 2020, 179: Article No.115686
[34] Femmer T, Kuehne A J, Wessling M. Estimation of the structure dependent performance of 3-D rapid prototyped membranes[J]. Chemical Engineering Journal, 2015, 273: 438-445
[35] Qureshi Z A, Elnajjar E, Al-Ketan O, et al. Heat transfer performance of a finned metal foam-phase change material (FMF-PCM) system incorporating triply periodic minimal surfaces (TPMS)[J]. International Journal of Heat and Mass Transfer, 2021, 170: Article No.121001
[36] Lei Hongyuan, Li Jingrong, Xu Zhijia, et al. TPMS-based porous structures modelling driven by pore characteristic parameters[J]. Journal of Computer-Aided Design & Computer Graphics, 2020, 32(1): 156-163+172(in Chinese) (雷鸿源, 李静蓉, 徐志佳, 等. 孔隙表征参数驱动的TPMS多孔结构建模[J]. 计算机辅助设计与图形学学报, 2020, 32(1): 156-163+172) [37] Femmer T, Kuehne A J C, Torres-rendon J, et al. Print your membrane: rapid prototyping of complex 3D-PDMS membranes via a sacrificial resist[J]. Journal of Membrane Science, 2015, 478: 12-18
[38] Rajagopalan S, Robb R A. Schwarz meets Schwann: design and fabrication of biomorphic and durataxic tissue engineering scaffolds[J]. Medical Image Analysis, 2006, 10(5): 693-712
[39] Li Zhuo, Wang Qinghui, Xu Zhijia. Micro-modeling of porous metal fibrous structure and its permeability study[J]. Modern Manufacturing Engineering, 2016(6): 6-8(in Chinese) (李卓, 王清辉, 徐志佳. 多孔金属纤维微观建模及孔隙渗透特性研究[J]. 现代制造工程, 2016(6): 6-8) [40] Melchels F P W, Bertoldi K, Gabbrielli R, et al. Mathematically defined tissue engineering scaffold architectures prepared by stereolithography[J]. Biomaterials, 2010, 31(27): 6909-6916
[41] Chen H, Han Q, Wang C Y, et al. Porous scaffold design for additive manufacturing in orthopedics: a review[J]. Frontiers in Bioengineering and Biotechnology, 2020, 8: 609
[42] Lu Y T, Zhao W Y, Cui Z T, et al. The anisotropic elastic behavior of the widely-used triply-periodic minimal surface based scaffolds[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 99: 56-65
[43] Abueidda D W, Jasiuk I, Sobh N A. Acoustic band gaps and elastic stiffness of PMMA cellular solids based on triply periodic minimal surfaces[J]. Materials & Design, 2018, 145: 20-27
[44] Yang W J, An J, Chua C K, et al. Acoustic absorptions of multifunctional polymeric cellular structures based on triply periodic minimal surfaces fabricated by stereolithography[J]. Virtual and Physical Prototyping, 2020, 15(2): 242-249
[45] Wang Y. Periodic surface modeling for computer aided nano design[J]. Computer-Aided Design, 2007, 39(3): 179-189
[46] Yoo D J. Porous scaffold design using the distance field and triply periodic minimal surface models[J]. Biomaterials, 2011, 32(31): 7741-7754
[47] Yoo D J. Advanced porous scaffold design using multi-void triply periodic minimal surface models with high surface area to volume ratios[J]. International Journal of Precision Engineering and Manufacturing, 2014, 15(8): 1657-1666
[48] Zhao Y F, Wei M, Lu J, et al. Biotemplated hierarchical nanostructure of layered double hydroxides with improved photocatalysis performance[J]. ACS Nano, 2009, 3(12): 4009-4016
[49] Yang P, Deng T, Zhao D, et al. Hierarchically ordered oxides[J]. Science, 1998, 282(5397): 2244-2246
[50] Yoo D. New paradigms in hierarchical porous scaffold design for tissue engineering[J]. Materials Science and Engineering: C, 2013, 33(3): 1759-1772
[51] Feng J W, Fu J Z, Lin Z W, et al. Layered infill area generation from triply periodic minimal surfaces for additive manufacturing[J]. Computer-Aided Design, 2019, 107: 50-63
[52] Ding J H, Zou Q, Qu S, et al. STL-free design and manufacturing paradigm for high-precision powder bed fusion[J]. CIRP Annals, 2021, 70(1): 167-170
[53] Yoo D J. Heterogeneous porous scaffold design for tissue engineering using triply periodic minimal surfaces[J]. International Journal of Precision Engineering and Manufacturing, 2012, 13(4): 527-537
[54] Chen H W, Guo Y, Rostami R, et al. Porous structure design using parameterized hexahedral meshes and triply periodic minimal surfaces[C] //Proceedings of Computer Graphics International. New York: Association for Computing Machinery Press, 2018: 117-128
[55] Wang Qinghui, Xia Gang, Xu Zhijia, et al. Modelling the microstructures of cancellous bone based on triply periodic minimal surface for tissue engineering[J]. Journal of Computer-Aided Design & Computer Graphics, 2016, 28(11): 1949-1956(in Chinese) (王清辉, 夏刚, 徐志佳, 等. 面向组织工程的松质骨微观结构TPMS建模方法[J]. 计算机辅助设计与图形学学报, 2016, 28(11): 1949-1956) [56] Li D W, Dai N, Jiang X T, et al. Interior structural optimization based on the density-variable shape modeling of 3D printed objects[J]. The International Journal of Advanced Manufacturing Technology, 2016, 83(9-12): 1627-1635
[57] Hu J B, Wang S F, Wang Y, et al. A lightweight methodology of 3D printed objects utilizing multi-scale porous structures[J]. The Visual Computer, 2019, 35(6-8): 949-959
[58] Yang N, Quan Z, Zhang D W, et al. Multi-morphology transition hybridization CAD design of minimal surface porous structures for use in tissue engineering[J]. Computer-Aided Design, 2014, 56: 11-21
[59] Yoo D J, Kim K H. An advanced multi-morphology porous scaffold design method using volumetric distance field and beta growth function[J]. International Journal of Precision Engineering and Manufacturing, 2015, 16(9): 2021-2032
[60] Wang S F, Zhou L C, Luo Z X, et al. Lightweight of artificial bone models utilizing porous structures and 3D printing[J]. International Journal of Performability Engineering, 2017, 13(5): 633-642
[61] Yan X, Rao C, Lu L, et al. Strong 3D printing by TPMS injection[J]. IEEE Transactions on Visualization and Computer Graphics, 2020, 26(10): 3037-3050
[62] Hu J B, Wang S F, Li B J, et al. Efficient representation and optimization for TPMS-based porous structures[J]. IEEE Transactions on Visualization and Computer Graphics, 2022, 28(7): 2615-2627
[63] Hu C F, Lin H W. Heterogeneous porous scaffold generation using trivariate B-spline solids and triply periodic minimal surfaces[J]. Graphical Models, 2021, 115: Article No.101105
[64] Feng J W, Fu J Z, Shang C, et al. Porous scaffold design by solid T-splines and triply periodic minimal surfaces[J]. Computer Methods in Applied Mechanics and Engineering, 2018, 336: 333-352
[65] Feng J W, Fu J Z, Shang C, et al. Sandwich panel design and performance optimization based on triply periodic minimal surfaces[J]. Computer-Aided Design, 2019, 115: 307-322
[66] Feng J W, Fu J Z, Shang C, et al. Efficient generation strategy for hierarchical porous scaffolds with freeform external geometries[J]. Additive Manufacturing, 2020, 31: Article No.100943
[67] Panesar A, Abdi M, Hickman D, et al. Strategies for functionally graded lattice structures derived using topology optimisation for additive manufacturing[J]. Additive Manufacturing, 2018, 19: 81-94
[68] Brackett D, Ashcroft I, Hague R. Topology optimization for additive manufacturing[C] //Proceedings of the Solid Freeform Fabrication Symposium. Austin: ETH-Zürich, 2011, 1: 348-362
[69] Wang J, Chen W W, Da D C, et al. IH-GAN: a conditional generative model for implicit surface-based inverse design of cellular structures[OL]. [2021-09-14]. https://arxiv.org/abs/2103.02588
[70] Du Yixian, Zhang Yue, Fu Junjian, et al. Topology optimization design of functionally graded cellular structure with integrated load bearing and heat dissipation[J]. Journal of Computer-Aided Design and Computer Graphics, 2021, 33(7): 1141-1150(in Chinese) (杜义贤, 张跃, 付君健, 等. 承载散热一体化的功能梯度多孔结构拓扑优化设计[J]. 计算机辅助设计与图形学学报, 2021, 33(7): 1141-1150) -
期刊类型引用(4)
1. 代铁琳,金刘超,尚宸,翟晓雅,傅孝明,刘利刚. 超材料的智能设计研究进展. 计算机辅助设计与图形学学报. 2025(01): 1-27 . 本站查看
2. 肖江海,侯俊玲,李群. 基于MJF的极小曲面结构力学行为及吸能特性研究. 固体力学学报. 2024(02): 201-212 . 百度学术
3. 黄心语,汤华远,王磊. 基于增材制造的三周期极小曲面结构关键力学性能研究进展. 力学学报. 2024(11): 3099-3115 . 百度学术
4. 刘宝昌,李庆棠,潘瑞新. G型三周期极小曲面结构导热性能研究. 世界有色金属. 2024(19): 43-45 . 百度学术
其他类型引用(7)
计量
- 文章访问数: 2167
- HTML全文浏览量: 256
- PDF下载量: 673
- 被引次数: 11