各向异性广义重心坐标及其应用
Anisotropic Generalized Barycentric Coordinates and Applications
-
摘要: 可在任意多边形上定义的且具有解析表达式的广义重心坐标通常不具有非负性,目前对广义重心坐标各向异性的工作相对较少.针对上述问题,提出了一种可在任意多边形上定义的,且具有非负性和各向异性的广义重心坐标——各向异性坐标.首先,对原始多边形内任意一点,生成该点的可见多边形;其次,基于Power图的相关性质,计算该点关于可见多边形的各向异性坐标;最后,将可见多边形上的各向异性坐标分解到原始多边形上.在图像变形的应用中,各向异性坐标提供了3个几何意义清晰的参数,以供用户直观地调整不同的变形效果;在函数插值的实验中,采用各向异性坐标得到的均方根误差比采用均值坐标时平均降低了44%;在图像逼近的实验中,采用各向异性坐标可有效减少在图像变化剧烈的区域处产生的伪影.Abstract: Most barycentric coordinates explicitly defined on general simple polygons do not possess the non-negative property. In addition, few works addressed the construction of generalized barycentric coordinates with the anisotropic property. This paper proposes non-negative coordinates that can be defined on general simple polygons and have the anisotropic property. Firstly, for any point in the original polygon, we first compute the corresponding visibility polygon. Secondly, we calculate the anisotropic coordinates of the point with respect to the visibility polygon based on the properties of the power diagram. Finally, the anisotropic coordinates on the visibility polygon are converted to the coordinates on the original polygon. In the application of image warping, the proposed anisotropic coordinates provide three parameters with intuitive geometric meaning for adjustment. In the experiment of function interpolation, the root mean square error obtained by using anisotropic coordinates is 44% lower than the mean value coordinates. In the experiment of image approximation, the use of anisotropic coordinates can reduce the artifacts in areas where the color changes drastically.