高级检索
宋亚光, 杨小汕, 徐常胜. 跨模态多视角自监督的个性化食谱推荐异构图网络[J]. 计算机辅助设计与图形学学报, 2023, 35(3): 413-422. DOI: 10.3724/SP.J.1089.2023.19347
引用本文: 宋亚光, 杨小汕, 徐常胜. 跨模态多视角自监督的个性化食谱推荐异构图网络[J]. 计算机辅助设计与图形学学报, 2023, 35(3): 413-422. DOI: 10.3724/SP.J.1089.2023.19347
Song Yaguang, Yang Xiaoshan, and Xu Changsheng. A Cross-Modal Multi-View Self-Supervised Heterogeneous Graph Network for Personalized Food Recommendation[J]. Journal of Computer-Aided Design & Computer Graphics, 2023, 35(3): 413-422. DOI: 10.3724/SP.J.1089.2023.19347
Citation: Song Yaguang, Yang Xiaoshan, and Xu Changsheng. A Cross-Modal Multi-View Self-Supervised Heterogeneous Graph Network for Personalized Food Recommendation[J]. Journal of Computer-Aided Design & Computer Graphics, 2023, 35(3): 413-422. DOI: 10.3724/SP.J.1089.2023.19347

跨模态多视角自监督的个性化食谱推荐异构图网络

A Cross-Modal Multi-View Self-Supervised Heterogeneous Graph Network for Personalized Food Recommendation

  • 摘要: 为了更好地建模食物不同内容信息之间的关系,提出一种基于跨模态多视角自监督异构图网络的个性化食物推荐模型.首先,基于用户食物以及食材,构建异构图;其次,基于信息传递,学习建模信息之间的复杂层级关系;再次,利用食物节点特征、食物食材特征以及食物图像特征,构建跨模态多视角对比自监督学习任务增强食物节点的表示;最后,利用用户表示以及基于注意力模块融合得到的食物综合表示完成食物推荐.在大规模食物推荐数据集上的实验结果表明,该方法比最优的基线方法在AUC,NDCG@10和Recall@10这3个指标上分别提升6.35%,8.13%和11.7%,从而证明了该方法的有效性.

     

    Abstract: To better model the association between different content information of recipes, we propose a cross-modal multi-view self-supervised heterogeneous graph network for personalized food recommendation. Firstly, we incorporate users, recipes and ingredients into a heterogeneous graph and model the complex hierarchical relationship between them based on message passing. Secondly, to better model the association between multi-modal information of food and promote the interaction between different modal information, we utilize the association of three kinds of food information, recipe nodes, ingredient nodes and recipe images to construct the cross-modal multi-view self-supervised learning task. Thirdly, the multi-modal features of recipes are integrated by the attention module guided by the user representation to obtain the comprehensive recipe representation. Finally, the food recommendation task is completed by measuring the similarity of the user representation and the comprehensive recipe representation. Experimental results on a large-scale food recommendation dataset show that the proposed method outperforms the optimal baseline method HAFR over AUC, NDCG@10 and Recall@10 by 6.35%, 8.13% and 11.7%, respectively, which verifies the effectiveness of our method.

     

/

返回文章
返回