高级检索
孙乾, 魏明强, 燕雪峰, 郭延文. 以图搜图:基于显著性注意力的美容产品检索网络[J]. 计算机辅助设计与图形学学报, 2023, 35(3): 383-391. DOI: 10.3724/SP.J.1089.2023.19313
引用本文: 孙乾, 魏明强, 燕雪峰, 郭延文. 以图搜图:基于显著性注意力的美容产品检索网络[J]. 计算机辅助设计与图形学学报, 2023, 35(3): 383-391. DOI: 10.3724/SP.J.1089.2023.19313
Sun Qian, Wei Mingqiang, Yan Xuefeng, Guo Yanwen. Search by Image: Beauty Product Retrieval Network via Salient Attention[J]. Journal of Computer-Aided Design & Computer Graphics, 2023, 35(3): 383-391. DOI: 10.3724/SP.J.1089.2023.19313
Citation: Sun Qian, Wei Mingqiang, Yan Xuefeng, Guo Yanwen. Search by Image: Beauty Product Retrieval Network via Salient Attention[J]. Journal of Computer-Aided Design & Computer Graphics, 2023, 35(3): 383-391. DOI: 10.3724/SP.J.1089.2023.19313

以图搜图:基于显著性注意力的美容产品检索网络

Search by Image: Beauty Product Retrieval Network via Salient Attention

  • 摘要: 在基于深度学习的美容产品检索任务中,图片背景、拍摄角度和产品摆放姿态均是产品图片上潜在的干扰信息;同时,检索数据库中众多相似产品会互相干扰.针对这些问题,将显著性注意力机制融入损失函数、随即丢弃模块和相似项计算中,分别设计了显著性损失函数、显著性随即丢弃模块和显著相似性方法,有效地抑制了用户待检索图片与检索数据库图片中的干扰信息;然后,采用有效的特征提取器抵抗图片相似项的干扰;最后综合上述4个模块,提出基于显著性注意力的美容产品检索网络SA-Net.经过Pro-10k数据集训练,在Per-500k数据集上进行消融学习和对比实验的结果表明,SA-Net提升了美容产品检索的准确度,比已公开的最好同类算法AMAC提高3%.

     

    Abstract: In beauty product retrieval, there exists much interference information in the product images, such as complicated backgrounds, camera shooting angles and product poses. Meanwhile, the retrieval dataset often contains large images with very similar products within them. To deal with these factors, introducing salient attention mechanism to loss, dropout and the similarity calculation, the novel SA Loss, SA Dropout and SA Similarity are designed which can effectively reduce the interference information. Then, the effective feature extractor is chosen to resist similar interference. Finally, combining these four modules, a salient attention based beauty product retrieval neural network (SA-Net) is proposed to enhance the retrieval accuracy. SA-Net is trained on Pro-10k dataset. The comparative experiment and ablation learning on Per-500k dataset show that the retrieval accuracy of SA-Net is 3% higher than that of the best state-of-the-art.

     

/

返回文章
返回