基于高斯混合特征改进的自编码器机场跑道FOD精准检测
Gaussian Mixture Feature Improved Autoencoder for FOD Detection on Airport Runway
-
摘要: 基于自编码器的图像重构方法可以检测机场跑道上类型未知的外来物. 针对自编码器良好的泛化能力导致异常重构的问题, 提出一种基于高斯混合特征改进的自编码器异常检测模型. 首先通过编码器获取输入图像的编码特征, 由高斯混合模型识别并剔除其中潜在的异常特征以重构图像; 在训练阶段, 通过联合估计网络对自编码器和高斯混合模型进行端到端优化, 建立准确的正常样本模型; 在测试阶段, 重构图像由剔除异常信息的编码特征生成,倾向于接近正常图像, 因此异常的重构误差较大; 为了进一步提高异常检测精度, 使用多层级语义差异进行异常检测. 在中国某机场的跑道道面数据集 FOD AD 和公共基准异常检测数据集 MVTec AD 上的实验结果表明, 所提模型在 FOD AD 数据集上平均 AUC 达 0.981, 在 MVTec AD 数据集上平均 AUC 达 0.985, 均优于对比的同类方法.Abstract: Image reconstruction based on autoencoder can detect unknown types of foreign object debris on airport runway. To tackle the problem of anomaly reconstruction caused by the strong generalization capability of autoencoder, the Gaussian mixture feature improved autoencoder is proposed. This model first obtains the encoding features of the input image through the encoder, and then the Gaussian mixture model identifies and eliminates potential abnormal features for reconstruction. At the training stage, the estimation network is combined to perform end-to-end optimization of autoencoder and Gaussian mixture model to build an accurate normal model. At the test stage, the reconstructed image is obtained from the encoding feature that removes abnormal information, which will tend to be close to the normal image, resulting in a large reconstruction error for anomalies. Furthermore, the multiple hierarchical semantic difference is employed to improve the accuracy of the anomaly detection. The experimental validation is carried out on the runway pavement dataset FOD AD from an airport in China and the public anomaly detection dataset MVTec AD. The experimental results demonstrate that the average AUC of the proposed model on FOD AD and MVTec AD achieves 0.981 and 0.985, respectively, which are better than similar methods in comparison.
下载: