面向高质量局部参数化的光滑测地距离场快速求解方法
A Fast Approach To Compute Smooth Geodesic Distance Fields Using For High-quality Local Parameterization
-
摘要: 网格曲面的局部参数化在数字几何处理中有着广泛的应用. 传统的局部参数化算法大多依赖于局部测地距离场的计算, 但无论是精确的测地线算法还是近似的测地线算法, 路径走向对网格化都十分敏感, 得到的参数化结果存在角度分布严重不均匀的现象. 为了获得尽可能等距的局部参数化结果, 提出面向高质量局部参数化的光滑测地距离场快速求解方法. 该方法将目标测地距离场表示为拉普拉斯矩阵的低频子空间中基底的线性组合, 通过求解网格表面的热传导方程, 获得基底向量的加权系数; 更进一步, 仅需要提取前面k个特征值作为预处理, 即可将求解测地距离场的过程变成矩阵与向量的快速乘法运算, 实现在较大规模的三维模型上实时交互的目的. 通过与精确算法和热传导方法关于单次计算速度和光滑度的对比实验, 体现出所提方法的优势; 以及局部参数化的对比实验中, 所提方法在局部参数化任务上的等距性.Abstract: Local parameterization provides a reliable tool for shape analysis, and thus has been widely used in digital geometry processing. Conventional algorithms have to depend on the computation of geodesic distance fields. However, for whether exact geodesic algorithms or approximate ones, the marching direction of a geodesic path is highly sensitive to triangulation, causing an uneven angle distribution in the local parameterization result. To obtain high-quality local parameterization results and we observe smooth distance fields have fewer singularities. So we propose a fast numerical approach for computing smooth geodesic distance fields. We represent the target geodesic distance field by a linear span of the basis vectors in the low-frequency subspace of the Laplace operator, which enables one to find the solution by solving the heat equation. Generally, the number of unknown variables is reduced to 10% or even a less percentage of the number of mesh vertices. We further use a simple eigen-decomposition operation, for defining the low-frequency subspace, to speed up the computation. Comparative studies validate the usefulness and effectiveness of our approach in local parameterization.