高级检索
王智, 薛明亮, 王一凡, 钟发海, 汪云海. 基于无冲突并行随机梯度下降的图布局求解方法[J]. 计算机辅助设计与图形学学报. DOI: 10.3724/SP.J.1089.2023-00627
引用本文: 王智, 薛明亮, 王一凡, 钟发海, 汪云海. 基于无冲突并行随机梯度下降的图布局求解方法[J]. 计算机辅助设计与图形学学报. DOI: 10.3724/SP.J.1089.2023-00627
Zhi Wang, Mingliang Xue, Yifan Wang, Fahai Zhong, Yunhai Wang. Graph Drawing by Conflict-Free Parallel Stochastic Gradient Descent
[J]. Journal of Computer-Aided Design & Computer Graphics. DOI: 10.3724/SP.J.1089.2023-00627
Citation: Zhi Wang, Mingliang Xue, Yifan Wang, Fahai Zhong, Yunhai Wang. Graph Drawing by Conflict-Free Parallel Stochastic Gradient Descent
[J]. Journal of Computer-Aided Design & Computer Graphics. DOI: 10.3724/SP.J.1089.2023-00627

基于无冲突并行随机梯度下降的图布局求解方法

Graph Drawing by Conflict-Free Parallel Stochastic Gradient Descent

  • 摘要: 应力模型是计算节点连接图布局时最常用的方法之一. 随机梯度下降法由于具有很好的收敛性, 常被用于求解应力模型, 但该方法难以实现有效并行. 虽然无锁随机梯度下降方法能大幅提高并行效率, 但其求解过程中常存在线程冲突, 导致结果准确性低. 为了提高并行图布局的效率和准确性, 提出一种无冲突的随机梯度下降的并行求解方法. 首先提出一种面向应力模型的线程分配算法, 将相同的点对分配到同一线程内计算, 保证基于随机梯度下降方法的图布局无冲突化求解; 然后仅对线程内的样本随机洗牌并减少次数, 进一步提升并行效率. 在16个不同规模的真实数据集上进行实验, 并将所提方法应用在稀疏化应力模型的求解上, 实验结果显示所提方法在求解精度上无损失且求解速度提高10倍以上, 从布局质量和运行效率2个方面证明了该方法的高效性和可用性.

     

    Abstract: The stress model is one of the most commonly used methods for graph layout. The stochastic gradient descent (SGD) algorithm is often used to solve the stress model due to its ease of convergence, but it is difficult to implement effective parallelization. Although the lock-free SGD method can greatly improve parallel efficiency, there are often thread conflicts during the solution process, leading to low result accuracy. To improve the efficiency and accuracy of parallel graph layout, this paper proposes a conflict-free parallel SGD solution method. Firstly, a thread allocation algorithm for the stress model is designed to ensure a conflict-free graph layout solution based on SGD. Secondly, by shuffling only the samples within each thread and reducing the number of iterations, the parallel efficiency is further improved. To test the efficiency of this method, comparative experiments were conducted on 16 real datasets of different scales, and the proposed method was applied to solve the sparse stress model, demonstrating the efficiency and usability of the proposed method in terms of layout quality and runtime efficiency.

     

/

返回文章
返回