成品油管道运行多参数时空模式提取与可视化
Extraction and Visualization of Multi-Parameter Spatio-Temporal Patterns of Multiproduct Pipeline Operation
-
摘要: 摘 要: 成品油管道运行过程不仅具有典型的时空特点, 且其运行模式需要由多个监测参数综合表征, 而现有的时空模式分析方法难以揭示多参数的综合时空特征, 因此提出一种基于多参数融合的张量分解方法用于成品油管道运行多参数时空模式的提取. 该方法根据不同分析角度通过对管道运行的多维监测参数进行信息量及相关性分析实现分组融合, 然后将融合后的时空数据建模为张量并使用张量分解及聚类的方法获取数据集的多维时空模式, 最后通过对不同模式下原始多参数变化趋势的对比分析, 进一步发现运行模式的时空规律. 基于此方法设计了一套可视化系统, 以支持用户从不同分析角度对多参数表征的综合时空模式进行提取及可视化, 并通过真实成品油管道数据进行案例研究, 实验结果得到领域专家的认同, 表明该方法为后续成品油管道数据分析提供了一种新思路和手段.Abstract: Abstract: The operation process of a multiproduct pipeline not only has typical spatio-temporal characteristics, but also its operation mode needs to be comprehensively characterized by multiple monitoring parameters. However, the existing spatio-temporal pattern analysis methods make it difficult to reveal the comprehensive spatio-temporal characteristics of multi-parameters. Therefore, a tensor decomposition method based on multi-parameter fusion is proposed to extract the multi-parameter spatio-temporal pattern of multiproduct pipeline operation. This method realizes grouping fusion by analyzing the information quantity and correlation of multi-dimensional monitoring parameters of pipeline operation from different analysis aspects, and then models the fused spatio-temporal data as tensors and uses tensor decomposition and clustering methods to obtain the multi-dimensional spatio-temporal pattern of the data set. Finally, through the comparative analysis of the changing trend of the original multi-parameter under different modes, the spatial and temporal law of the operation mode is further found. Based on this method, a visualization system is designed to support the user in extracting and visualizing the comprehensive spatial and temporal patterns of multi-parameter representation from different perspectives, and the case study is carried out through the real multiproduct pipeline data. The experimental results are recognized by field experts, which shows that this method provides a new idea and tool for the subsequent multiproduct pipeline data analysis.