高级检索
尹嘉超, 吕耀文, 索科, 黄玺. 基于EfficientNetv2的PCB缺陷检测算法[J]. 计算机辅助设计与图形学学报. DOI: 10.3724/SP.J.1089.2023-00551
引用本文: 尹嘉超, 吕耀文, 索科, 黄玺. 基于EfficientNetv2的PCB缺陷检测算法[J]. 计算机辅助设计与图形学学报. DOI: 10.3724/SP.J.1089.2023-00551
Jiachao Yin, Yaowen Lü, Ke Suo, Xi Huang. PCB Defect Detection Algorithm Based on EfficientNetv2[J]. Journal of Computer-Aided Design & Computer Graphics. DOI: 10.3724/SP.J.1089.2023-00551
Citation: Jiachao Yin, Yaowen Lü, Ke Suo, Xi Huang. PCB Defect Detection Algorithm Based on EfficientNetv2[J]. Journal of Computer-Aided Design & Computer Graphics. DOI: 10.3724/SP.J.1089.2023-00551

基于EfficientNetv2的PCB缺陷检测算法

PCB Defect Detection Algorithm Based on EfficientNetv2

  • 摘要: 印刷电路板(PCB)是一种高精密的电子元器件, 其优良与否对电子产品的质量有着重要影响. 但现有的PCB缺陷检测算法存在着检测精度不高, 特别是缺陷定位不够精确等问题. 针对以上问题提出一种基于EfficientNetV2的PCB缺陷检测算法. 在Faster R-CNN的基础上, 通过选用特征提取能力更强的EfficientNetV2_M作为特征提取网络,同时使用通道注意力机制(ECA)对特征融合网络FPN进行优化, 提高了细节信息提取能力. 在北京大学智能机器人开放实验室发布的PCB瑕疵数据集上的实验结果表明改进后的缺陷检测算法相较于目前检测效果最好的PCB缺陷检测算法LWN-Net, 在IoU=0.50时mAP由99.58%提升到99.66%;在IoU=0.50:0.95时mAP由52.6%提升到79.4%.该网络在提升了PCB的检测精度的同时解决了缺陷定位不够精确的问题, 实现了高精度的PCB缺陷检测, 具有一定的实际意义. 代码已经开源在https://github.com/ChaO989/Defect_detection.

     

    Abstract: Printed Circuit Boards (PCBs) are crucial electronic components with a significant impact on the quality of electronic products. However, existing PCB defect detection algorithms suffer from limitations in detection accuracy, especially in precise defect localization. To address these challenges, this paper proposes a novel PCB defect detection algorithm based on EfficientNetV2. Building upon the Faster R-CNN architecture, we leverage the powerful feature extraction capabilities of EfficientNetV2_M as the backbone network. Furthermore, we optimize the feature fusion network FPN (feature pyramid network) by incorporating the Channel Attention Mechanism (ECA) to enhance the extraction of intricate details. Experimental results on the PCB defect data set released by Peking University Intelligent Robot Open Laboratory demonstrate that the proposed defect detection algorithm outperforms the state-of-the-art LWN-Net in terms of mAP (mean Average Precision) at IoU=0.50, with an increase from 99.58% to 99.66%. Moreover, at IoU=0.50:0.95, the mAP significantly improves from 52.6% to 79.4%. Consequently, the enhanced algorithm achieves highly accurate PCB defect detection while addressing the issue of imprecise defect localization, thus holding substantial practical significance. The code is available at https://github.com/ChaO989/Defect_detection.

     

/

返回文章
返回