高级检索
连远锋, 赵泽欣. 融合卷积CR-FFD与偏置Transformer胶囊网络的单视图三维物体重建[J]. 计算机辅助设计与图形学学报. DOI: 10.3724/SP.J.1089.2023-00459
引用本文: 连远锋, 赵泽欣. 融合卷积CR-FFD与偏置Transformer胶囊网络的单视图三维物体重建[J]. 计算机辅助设计与图形学学报. DOI: 10.3724/SP.J.1089.2023-00459
YuanFeng LIAN, Zexin Zhao. Single view 3D object reconstruction based on CR-FFD and offset Transformer capsule network[J]. Journal of Computer-Aided Design & Computer Graphics. DOI: 10.3724/SP.J.1089.2023-00459
Citation: YuanFeng LIAN, Zexin Zhao. Single view 3D object reconstruction based on CR-FFD and offset Transformer capsule network[J]. Journal of Computer-Aided Design & Computer Graphics. DOI: 10.3724/SP.J.1089.2023-00459

融合卷积CR-FFD与偏置Transformer胶囊网络的单视图三维物体重建

Single view 3D object reconstruction based on CR-FFD and offset Transformer capsule network

  • 摘要: 针对复杂拓扑结构物体单视图三维重建过程中难以准确映射问题, 本文提出了一种融合卷积Catmull-Rom样条自由形变(CR-FFD)与偏置Transformer胶囊网络的单视图三维重建方法. 首先, 通过Catmull-Rom样条基函数对点云模型控制点进行插值来保持点云模型形变局部拓扑结构的一致性. 然后提出卷积神经网络最小二乘求逆解法, 通过非线性参数映射加速求解过程. 最后设计了偏置注意力Transformer胶囊网络增强局部特征表达能力以捕获点云形状的细粒度特征. 在ShapeNet数据集的实验表明, EMD指标平均值为3.84, CD指标平均值为3.71. 在Pix3D数据集的EMD指标平均值为5.51, CD指标平均值为5.39. 与已有的单视图点云三维重建方法相比, 本文所提出的方法有效提升了单视图的三维重建结果, 能够从不同角度保持重建的一致性.

     

    Abstract: Aiming at the difficulty of accurate mapping in the process of single view 3D reconstruction of complex topological objects, a single view 3D reconstruction method combining convolution Catmull-Rom spline free-form deformation (CR-FFD) and offset Transformer capsule network is proposed in this paper. Firstly, Catmull-Rom spline basis function was used to interpolate the control points of the point cloud model to maintain the consistency of the local topology of the point cloud model deformation. Then, the least square inverse solution method based on convolutional neural network is used to accelerate the solution process through nonlinear parameter mapping. Finally, a Transformer encoder module based on offset attention is designed and embedded into the capsule network to enhance the local feature expression ability to capture the fine-grained features of the shape of the point cloud. Experiments on ShapeNet dataset show that the average values of EMD and CD are 3.84 and 3.71, respectively, and the average values of EMD and CD in Pix3D dataset are 5.51 and 5.39, respectively. Compared with the existing single-view point cloud 3D reconstruction methods, the proposed method effectively improves the 3D reconstruction results of single-view point cloud, and can maintain the consistency of reconstruction from different perspectives.

     

/

返回文章
返回