高级检索
刘胜男, 姜璐璐, 郑宛露, 王少荣, 汪国平. 基于互引导条件耦合的小样本语义分割[J]. 计算机辅助设计与图形学学报. DOI: 10.3724/SP.J.1089.2023-00457
引用本文: 刘胜男, 姜璐璐, 郑宛露, 王少荣, 汪国平. 基于互引导条件耦合的小样本语义分割[J]. 计算机辅助设计与图形学学报. DOI: 10.3724/SP.J.1089.2023-00457
Shengnan Liu, Lulu Jiang, Wanlu Zheng, Shaorong Wang, Guoping Wang. Few-Shot Semantic Segmentation Based on Mutually Guided Conditional Coupling[J]. Journal of Computer-Aided Design & Computer Graphics. DOI: 10.3724/SP.J.1089.2023-00457
Citation: Shengnan Liu, Lulu Jiang, Wanlu Zheng, Shaorong Wang, Guoping Wang. Few-Shot Semantic Segmentation Based on Mutually Guided Conditional Coupling[J]. Journal of Computer-Aided Design & Computer Graphics. DOI: 10.3724/SP.J.1089.2023-00457

基于互引导条件耦合的小样本语义分割

Few-Shot Semantic Segmentation Based on Mutually Guided Conditional Coupling

  • 摘要: 语义分割旨在将图像中各像素分配至不同语义类别. 传统方法依赖大量数据以学习特征与语义信息, 标注数据不足时性能下降. 本文研究小样本语义分割, 在较少数据上实现优异分割与泛化能力. 现有的小样本语义分割方法普遍采用简单的融合策略来实现跨分支信息传递, 难以捕获复杂的特征交互信息, 因此, 本文提出了一个互引导条件耦合网络实现支持-查询分支的高效融合. 该网络设计了一个耦合信息生成模块, 该模块聚焦于支持特征中与查询特征高度相似的区域, 以使查询特征中的每个像素能够自适应地融合支持特征的像素级信息. 同时, 为了减少查询图像背景对融合效果的负面影响, 另外还设计了一个条件耦合模块. 在该模块中, 生成的条件可用于抑制查询图像背景区域的信息吸收, 从而有效避免了背景信息对结果的干扰. 本文在PASCAL-5i以及COCO-20i进行了大量的实验验证和分析, 实验结果相对于基线方法有显著改进.

     

    Abstract: In Semantic segmentation aims to assign pixels in an image to different semantic categories. Traditional methods rely heavily on data to learn features and semantic information, and performance drops when there is insufficient labeled data. This paper studies few-shot semantic segmentation to achieve excellent segmentation and generalization capabilities on a smaller dataset. Existing few-shot semantic segmentation methods commonly use simple fusion strategies to achieve information transmission across branches, which are unable to capture complex feature interaction information. Therefore, this paper proposes a mutually guided conditional coupling network to efficiently fuse the support-query branches. The network designs a coupling information generation module, which focuses on the regions in the support feature highly similar to the query feature, so that each pixel in the query feature can adaptively fuse pixel-level information from the support feature. Additionally, to reduce the negative impact of the query image background on the fusion effect, a conditional coupling module is also designed. In this module, the generated conditions can be used to suppress information absorption in the query image background regions, effectively avoiding interference from background information on the results. This paper conducts extensive experimental verification and analysis on PASCAL-5i and COCO-20i, and the experimental results show significant improvements relative to baseline methods.

     

/

返回文章
返回