高级检索

基于局部Transformer的多尺度图像去雾网络

Multi-Scale Image Dehazing Network Based on Local Transformer

  • 摘要: 针对现有去雾方法大多无法较好地处理非均匀雾度雾天图像的问题, 提出一个高效的基于局部 Transformer的多尺度图像去雾网络 MIDNet. 首先利用局部 Transformer 的线性计算优势、窗口内的局部信息及像素间的远程关系, 设计多尺度特征提取器, 高效而全面地提取多尺度特征; 然后结合金字塔结构和密集连接提出特征聚合模块,实现多源多层级特征的全面聚合; 最后基于门控结构设计细节增强单元, 保留图像更多边缘等细节信息. 在RESIDE, O-HAZE, I-HAZE, NH-HAZE 和 NITER 数据集上的大量实验证明, MIDNet 获得了更优的视觉效果, 且在NITER 数据集上, MIDNet 相较于 SRKTDN 和 DeHamer 方法的 PSNR 分别提高了 5.552 0 dB 和 8.170 2 dB, SSIM 分别提高了 0.029 7 和 0.095 3.

     

    Abstract: Aiming at the problem that most existing dehazing methods cannot deal with hazy images with non-homogeneous haze well, an efficient local Transformer-based multi-scale image dehazing network (MIDNet) is proposed. First, a multi-scale feature extractor is designed to efficiently and comprehensively extract multi-scale features, which takes advantage of the linear computing characteristics, the local information in the local window and the long-range relationship between pixels of the local Transformer. Then a feature aggregation module is proposed based on the pyramid structure and dense connection to achieve comprehensive aggregation of multi-source and multi-level features. Finally, a detail enhancement unit based on the gated structure is designed to retain the image more edge and other detailed information. Extensive experiments on RESIDE, O-HAZE, I-HAZE, NH-HAZE and NITER datasets demonstrate that MIDNet has better visual effect. And on the NITER dataset, compared with the SRKTDN and DeHamer methods, the PSNR of MIDNet increases by 5.552 0 dB and 8.170 2 dB respectively, and the SSIM increases by 0.029 7 and 0.095 3 respectively.

     

/

返回文章
返回