高级检索
毛德乾, 高珊珊, 吕海霞, 张彩明, 周元峰. 基于局部Transformer的多尺度图像去雾网络[J]. 计算机辅助设计与图形学学报. DOI: 10.3724/SP.J.1089.2023-00449
引用本文: 毛德乾, 高珊珊, 吕海霞, 张彩明, 周元峰. 基于局部Transformer的多尺度图像去雾网络[J]. 计算机辅助设计与图形学学报. DOI: 10.3724/SP.J.1089.2023-00449
Deqian Mao, Shanshan Gao, Haixia Lü, Caiming Zhang, Yuanfeng Zhou. Multi-scale Image Dehazing Network Based on Local Transformer[J]. Journal of Computer-Aided Design & Computer Graphics. DOI: 10.3724/SP.J.1089.2023-00449
Citation: Deqian Mao, Shanshan Gao, Haixia Lü, Caiming Zhang, Yuanfeng Zhou. Multi-scale Image Dehazing Network Based on Local Transformer[J]. Journal of Computer-Aided Design & Computer Graphics. DOI: 10.3724/SP.J.1089.2023-00449

基于局部Transformer的多尺度图像去雾网络

Multi-scale Image Dehazing Network Based on Local Transformer

  • 摘要: 现有的去雾方法大多针对均匀雾度的雾天图像进行去雾, 而在处理非均匀雾度的雾天图像时取得的效果往往是不理想的. 在本文中, 我们提出了一个高效的基于局部Transformer的多尺度图像去雾网络(MIDNet), 利用局部Transformer的线性计算优势、窗口内的局部信息及像素间的远程关系, 以更好地处理均匀和非均匀雾度的雾天图像. 首先, 基于局部 Transformer设计了一个多尺度特征提取器, 高效而全面地提取多尺度的特征, 使网络更具泛化性和灵活性. 其次, 提出的基于金字塔结构和密集连接的特征聚合模块实现了多源多层级特征的全面聚合. 最后, 为重建出边缘清晰和细节丰富的去雾图像, 本文基于门控结构设计了细节增强单元, 保留了图像更多的细节信息(如边缘等). 在RESIDE、O-HAZE、I-HAZE、NH-HAZE和NITER数据集上的大量实验证明, 所提出的MIDNet获得了更优的去雾性能.

     

    Abstract: Most of the existing dehazing methods aim at hazy images with homogeneous haze, but the results obtained when dealing with hazy images with non-homogeneous haze are often unsatisfactory. In this paper, we propose an efficient local Transformer-based multi-scale image dehazing network (MIDNet), which takes advantage of the linear computing characteristics, the local information in the local window and the long-range relationship between pixels of the local Transformer to better handle hazy images with homogeneous and non-homogeneous haze. First, a multi-scale feature extractor based on local Transformer is designed to extract multi-scale features efficiently and comprehensively, making the network more generalizable and flexible. Secondly, the proposed feature aggregation module based on pyramid structure and the dense connection realizes the comprehensive aggregation of multi-source and multi-level features. Finally, in order to reconstruct the dehazed image with clear edges and rich details, the detail enhancement unit based on the gate structure is presented to retain the image more detailed information (such as edges, etc.). Extensive experiments on RESIDE, O-HAZE, I-HAZE, NH-HAZE and NITER datasets demonstrate that the proposed MIDNet achieves better dehazing performance.

     

/

返回文章
返回