高级检索
赵辉荣, 余映, 陈安, 倪雪莹, 王信超. 基于残差双通道注意力U-Net的古代壁画病害检测[J]. 计算机辅助设计与图形学学报. DOI: 10.3724/SP.J.1089.2023-00430
引用本文: 赵辉荣, 余映, 陈安, 倪雪莹, 王信超. 基于残差双通道注意力U-Net的古代壁画病害检测[J]. 计算机辅助设计与图形学学报. DOI: 10.3724/SP.J.1089.2023-00430
Huirong Zhao, Ying Yu, An Chen, Xueying Ni, Xinchao Wang. Ancient Mural Disease Detection Based on Residual Dual Channel Attention U-Net[J]. Journal of Computer-Aided Design & Computer Graphics. DOI: 10.3724/SP.J.1089.2023-00430
Citation: Huirong Zhao, Ying Yu, An Chen, Xueying Ni, Xinchao Wang. Ancient Mural Disease Detection Based on Residual Dual Channel Attention U-Net[J]. Journal of Computer-Aided Design & Computer Graphics. DOI: 10.3724/SP.J.1089.2023-00430

基于残差双通道注意力U-Net的古代壁画病害检测

Ancient Mural Disease Detection Based on Residual Dual Channel Attention U-Net

  • 摘要: 针对现有的古代壁画病害检测方法难以准确地检测壁画病害区域的问题, 提出一种基于残差双通道注意力U-Net的古代壁画病害检测模型. 首先设计残差双通道模块代替U-Net中的编码器和解码器, 构建具有多分辨率分析能力的网络检测复杂背景中不同尺度的壁画病害区域; 然后加入多尺度注意力门融合高层和低层的互补特征, 使网络能突出壁画病害区域的显著特征; 最后设计混合域注意力模块抑制壁画背景信息的干扰, 进一步准确地定位壁画病害区域; 此外, 采用多阶段损失相加的方式提高网络模型的性能. 实验结果表明, 在敦煌莫高窟壁画数据集和云南少数民族壁画数据集上, 所提模型的检测结果在视觉感受方面优于其他对比方法, 在F-score指标上分别达到了0.807 7和0.728 9, 均高于其他对比方法.

     

    Abstract: To address the challenge of accurately detecting disease areas in ancient murals with existing methods, a novel ancient mural disease detection model based on a residual dual channel attention U-Net is proposed. Firstly, a residual dual channel module is designed to replace the encoder and decoder in U-Net, constructing a network capable of multi-resolution analysis to detect mural disease areas of varying scales against complex backgrounds. Then, a multi-scale attention gate is incorporated to fuse complementary features from both high and low levels, enabling the network to emphasize salient features of mural disease areas. Finally, a mixed domain attention module is designed to suppress the interference of mural background information, further accurately locating mural disease areas. Additionally, a multi-stage loss addition approach is employed to improve the performance of the network model. Experimental results on the Dunhuang Mogao Grottoes mural dataset and the Yunnan ethnic minority mural dataset demonstrate that the proposed model outperforms other comparative methods in visual perception, achieving F-score metrics of 0.807 7 and 0.728 9, respectively, both higher than those of other comparative methods.

     

/

返回文章
返回