高级检索
刘宇, 丁阳, Fatimah binti Khalid, 李昕, Mas Rina binti Mustaffa, Azreen bin Azman. 联合内容和风格表示的无监督字体生成网络[J]. 计算机辅助设计与图形学学报. DOI: 10.3724/SP.J.1089.2023-00397
引用本文: 刘宇, 丁阳, Fatimah binti Khalid, 李昕, Mas Rina binti Mustaffa, Azreen bin Azman. 联合内容和风格表示的无监督字体生成网络[J]. 计算机辅助设计与图形学学报. DOI: 10.3724/SP.J.1089.2023-00397
Yu Liu, Yang Ding, atimahbintiKhalid F, Xin Li, asRinabintiMustaffa M, zreenbinAzman A. Unsupervised Font Generation Networks for Joint Content and Style Representation[J]. Journal of Computer-Aided Design & Computer Graphics. DOI: 10.3724/SP.J.1089.2023-00397
Citation: Yu Liu, Yang Ding, atimahbintiKhalid F, Xin Li, asRinabintiMustaffa M, zreenbinAzman A. Unsupervised Font Generation Networks for Joint Content and Style Representation[J]. Journal of Computer-Aided Design & Computer Graphics. DOI: 10.3724/SP.J.1089.2023-00397

联合内容和风格表示的无监督字体生成网络

Unsupervised Font Generation Networks for Joint Content and Style Representation

  • 摘要: 生成由大量字符组成中文字体是一个具有挑战性的任务, 现有的字体生成方法是在大量的配对数据监督下学习的. 收集这些数据是劳动密集型的工作, 而且很难扩展新风格字体. 为辅助字体设计师提高计算机汉字字库开发效率, 提出一种分离字体内容和风格表示的无监督字体生成网络, 将两种表示在同一域中建立密集的语义对应, 由它指导解码器产生高质量的输出, 且在跳跃连接中引入可变形卷积, 通过学偏移量和通道之间的相互依赖性, 使模型更加注字体的结构特征. 另外设计了多尺度风格判别器, 在不尺度上评估生成图像的风格一致性. 广泛的实验表明, 文中的模型取得了优于最先进的字体生成方法结果. 此外, 所提出的模型能够学习其他语言的字体风格, 并生成模型未训练过的字体风格.

     

    Abstract: Generating Chinese fonts composed of a large number of characters is a challenging problem, and existing font generation methods are learned under the supervision of a large amount of paired data. Collecting such data is labor-intensive, and it is difficult to extend new styles of fonts. In order to assist font designers to improve the development efficiency of computer Chinese character fonts, an unsupervised font generation network that separates font content and style representation is proposed, and the two representations are established in the same domain. Dense semantic correspondence, and then used to guide the decoder to generate high-quality fonts Quality output. Deformable convolution is introduced in the skip connection, and the model is more focused on the structural features of fonts by learning the interdependence between offsets and channels. In addition, a multi-scale style discriminator is designed, which can be used on different scales Evaluate the style consistency of generated images. Extensive experiments show that the model in this paper achieves better results than the state-of-the-art font generation methods. In addition, the proposed model is able to learn font styles of other languages, and can generate font style.

     

/

返回文章
返回