高级检索

联合内容和风格表示的无监督字体生成网络

Unsupervised Font Generation Network Integrating Content and Style Representation

  • 摘要: 生成包含大量字体的中文字体是具有挑战性的任务, 现有方法主要依赖于大量的配对数据进行监督学习,然而收集这些数据是劳动密集型的工作, 且很难扩展到新风格字体. 为辅助字体设计师提高计算机汉字字库开发效率, 提出分离字体内容和风格表示的无监督字体生成网络. 首先, 将风格和内容表示在同一域中建立密集的语义对应, 指导解码器产生高质量的输出; 然后, 在跳跃连接中引入可变形卷积, 通过学习偏移量和通道之间的相互依赖性, 使网络更加注字体的结构特征; 最后, 设计多尺度风格判别器, 在不同尺度上评估生成图像的风格一致性. 在公开的数据集上展示并分析 FUNIT, MX-Font 和 DG-Font 等5种字体生成方法的生成效果, 实验结果表明在 L1, RMSE等评估指标和用户研究实验中均优于对比的方法.

     

    Abstract: Generating Chinese fonts with a large number of characters is a challenging task. Existing methods mainly rely on large amounts of paired data for supervised learning, but collecting such data is labor-intensive and difficult to scale to new styles of fonts. To assist font designers in improving the efficiency of computer Chinese font library development, an unsupervised font generation network that separates font content and style representations is proposed. First, establish dense semantic correspondences between style and content representations in the same domain to guide the decoder to produce high-quality outputs. Then, introduce deformable convolutions in the skip connection, and make the model more focused on the structural characteristics of the font through the mutual dependence between the learning offset and the channel. Finally, design a multi-scale style discriminator to evaluate the style consistency of generated images at different scales. The team demonstrated and analyzed the generation effects of five font generation methods on public datasets, including FUNIT, MX-Font, and DG-Font. Experimental results show that the method outperforms others in terms of L1, RMSE, and user study experiments.

     

/

返回文章
返回