高级检索

半监督角色动画风格迁移

Semi-Supervised Character Motion Style Transfer

  • 摘要: 针对有监督动画风格迁移方法对未知内容泛化性差, 以及无监督方法生成动画风格不一致且不自然的问题,提出一种半监督动画风格迁移方法. 所提方法使用 2 个编码器分别从内容动画和风格动画中提取内容和风格特征,并使用解码器进行特征融合和动画生成; 为提升泛化性, 使用大规模无标签动画扩充内容动画数据集, 并用内容保留损失与末端执行器损失使生成结果与输入内容动画相似; 为保持风格一致性, 将生成结果重新输入风格编码器提取风格特征, 并计算与原风格和另一其他风格特征之间的三元组损失. 在 2 个公开数据集 BFA 和 CMU 上与 MotionPuzzle 等方法对比, 所提方法生成动画的 MID 值与用户调研结果均得到明显提升.

     

    Abstract: To address the poor generalization of supervised style transfer methods to unseen content, and the style inconsistency and unnaturalness of the motion generated by unsupervised methods, a semi-supervised motion style transfer method is proposed. The method employs two encoders to extract content and style features from content and style motions, respectively, and utilizes a decoder to fuse features and generate motions. To enhance generalization, a large-scale unlabeled motion dataset is used to augment the content motion dataset, and content preservation loss along with end-effector loss is applied to ensure the generated result resembles the input content motion. To maintain style consistency, the generated result is re-input into the style encoder to extract style features, and a triplet loss is calculated between the original style, the generated style, and another different style feature. Compared with methods such as Motion Puzzle on two public datasets, BFA and CMU, the proposed method significantly improves the MID values and user study results.

     

/

返回文章
返回