高级检索
黄倩, 崔静雯, 李畅. 基于骨骼的人体行为识别方法研究综述[J]. 计算机辅助设计与图形学学报. DOI: 10.3724/SP.J.1089.2023-00358
引用本文: 黄倩, 崔静雯, 李畅. 基于骨骼的人体行为识别方法研究综述[J]. 计算机辅助设计与图形学学报. DOI: 10.3724/SP.J.1089.2023-00358
Qian Huang, JingWen Cui, Chang Li. A Review of Skeleton-Based Human Action Recognition[J]. Journal of Computer-Aided Design & Computer Graphics. DOI: 10.3724/SP.J.1089.2023-00358
Citation: Qian Huang, JingWen Cui, Chang Li. A Review of Skeleton-Based Human Action Recognition[J]. Journal of Computer-Aided Design & Computer Graphics. DOI: 10.3724/SP.J.1089.2023-00358

基于骨骼的人体行为识别方法研究综述

A Review of Skeleton-Based Human Action Recognition

  • 摘要: 人体行为识别在视频理解中发挥了重要作用. 近年来, 基于骨骼的行为识别方法因其对复杂环境的干扰更具鲁棒性而受到广泛关注. 本文共整理了100种基于骨骼的人体行为识别方法, 并在九个公开数据集上对其进行了对比分析. 本文按照特征学习方式的不同, 分别介绍了基于手工特征的方法和基于深度学习的方法. 其中, 基于手工特征的方法按特征描述符的不同分为几何描述符、动力学描述符、统计描述符三个子类;基于深度学习的方法按网络主体的不同分为循环神经网络、卷积神经网络、图卷积网络、Transformer和混合网络五个子类. 通过以上分析, 我们不仅阐述了基于骨骼的行为识别方法的发展历程还总结了现有方法面临的挑战及未来研究方向, 对推动该领域的研究具有重要意义.

     

    Abstract: Human action recognition plays a vital role in video understanding. In recent years, skeleton-based action recognition approaches have gained widespread attention due to their robustness against environmental interferences. This paper compiles 100 skeleton-based human action recognition methods and comparatively analyzes their performance on nine public datasets. This paper introduces the manual feature and deep learning based methods according to learning paradigms. Specifically, the manual feature methods are divided into three categories, i.e., geometric, kinetic, and statistical representations, in the light of feature descriptor. Meanwhile, the deep learning based methods are classified into five subclasses by backbones, i.e., recurrent neural networks, convolutional neural networks, graph convolutional networks, transformer, and hybrid networks. Through comprehensive analysis, we not only present the research status of skeleton-based action recognition but also summarize the challenges and future works, which will promote the research in this field significantly.

     

/

返回文章
返回