高级检索
朱望江, 郭建伟, 张吉光, 孟维亮, 张晓鹏. 用于激光雷达目标检测的单阶段无锚框优化网络[J]. 计算机辅助设计与图形学学报. DOI: 10.3724/SP.J.1089.2023-00329
引用本文: 朱望江, 郭建伟, 张吉光, 孟维亮, 张晓鹏. 用于激光雷达目标检测的单阶段无锚框优化网络[J]. 计算机辅助设计与图形学学报. DOI: 10.3724/SP.J.1089.2023-00329
Wangjiang Zhu, Jianwei Guo, Jiguang Zhang, WeiLiang Meng, Xiaopeng Zhang. An Optimized Network For One-Stage Anchor-Free LiDAR Object Detection[J]. Journal of Computer-Aided Design & Computer Graphics. DOI: 10.3724/SP.J.1089.2023-00329
Citation: Wangjiang Zhu, Jianwei Guo, Jiguang Zhang, WeiLiang Meng, Xiaopeng Zhang. An Optimized Network For One-Stage Anchor-Free LiDAR Object Detection[J]. Journal of Computer-Aided Design & Computer Graphics. DOI: 10.3724/SP.J.1089.2023-00329

用于激光雷达目标检测的单阶段无锚框优化网络

An Optimized Network For One-Stage Anchor-Free LiDAR Object Detection

  • 摘要:   激光雷达点云中的目标检测对于机器人领域, 尤其是自动驾驶, 非常重要. 随着深度学习的兴起和图像目标检测算法的快速进步, 近年来很多工作开始迁移图像目标检测领域的最佳实践, 但受限于计算量的约束, 网络结构设计还比较粗糙, 检测效果还有待提升. 本文提出了一种用于激光雷达目标检测的单阶段无锚框优化网络: 包括体素化的方式、主干网络的设计以及特征金字塔的引入. 通过这些优化, 我们得到了一个检测性能优秀、跨平台友好, 并且能在自动驾驶车端实时运行的网络结构. 本文的网络结构也在公开数据集KITTI上验证了性能的领先性.
      关键词: 目标检测; 激光雷达; 自动驾驶; 单阶段中图法分类号: TP391.41 DOI: ****/*********.论文编号:7

     

    Abstract: Object detection in LiDAR point clouds is crucial for the field of robotics, especially in autonomous driving. With the rise of deep learning and the rapid advancement of image-based object detection algorithms, many recent works have started to transfer best practices from the image-based object detection field. However, due to computational constraints, network architecture designs are still relatively coarse and detection performance is in need of improvement. This paper proposes an optimized network for one-stage anchor-free LiDAR object detection, including voxelization, backbone network design, and feature pyramid introduction. Through these optimizations, we obtain a network structure that performs excellently in detection on cross platform, and can run in real-time on autonomous driving vehicles. Experiments validate that our network architecture outperforms other state-of-the-art methods on the publicly available KITTI dataset.

     

/

返回文章
返回