高级检索
杨佳钧, 张金艺, 陈琪. 面向智慧交通的双重特征融合图像曝光校正[J]. 计算机辅助设计与图形学学报. DOI: 10.3724/SP.J.1089.2023-00217
引用本文: 杨佳钧, 张金艺, 陈琪. 面向智慧交通的双重特征融合图像曝光校正[J]. 计算机辅助设计与图形学学报. DOI: 10.3724/SP.J.1089.2023-00217
JiaJun YANG, , . Image Exposure Correction Based on Dual Feature Fusion for Intelligent Transportation[J]. Journal of Computer-Aided Design & Computer Graphics. DOI: 10.3724/SP.J.1089.2023-00217
Citation: JiaJun YANG, , . Image Exposure Correction Based on Dual Feature Fusion for Intelligent Transportation[J]. Journal of Computer-Aided Design & Computer Graphics. DOI: 10.3724/SP.J.1089.2023-00217

面向智慧交通的双重特征融合图像曝光校正

Image Exposure Correction Based on Dual Feature Fusion for Intelligent Transportation

  • 摘要: 在智慧交通领域中, 监控拍摄的图像质量会受到场景光照条件的影响而造成关键信息损失, 进而导致后续交通执法缺乏可靠的图像依据, 然而现有的图像曝光校正方法存在校正后图像颜色失真、细节模糊等问题. 为此, 本文提出了一种面向智慧交通的双重特征融合图像曝光校正方法, 该方法分别通过全局子网与曝光子网提取相关特征. 其中, 前者引入特征注意力机制以提取图像全局特征, 改善校正图像的整体亮度与颜色; 后者基于Unet网络结构, 引入多尺度注意力机制提取图像中不同尺度的曝光特征, 提升校正图像的细节纹理; 最后, 通过对双重特征进行融合, 将其映射至图像空间, 以实现图像曝光校正. 实验结果表明, 该方法在MSEC数据集上PSNR达到21.8015 dB, SSIM达到0.8677, NIQE达到11.7118, 均优于现有曝光校正方法, 能够有效还原图像颜色信息与细节纹理, 证明本文方法具有良好的曝光校正效果.

     

    Abstract: In the field of intelligent transportation, the quality of images captured by surveillance cameras can be affected by the lighting conditions of the scene, resulting in the loss of critical information, which in turn leads to a lack of reliable image evidence for subsequent traffic enforcement. However, existing image exposure correction methods have problems such as color distortion and blurry details in the corrected image. Therefore, this article proposes a dual feature fusion image exposure correction method for intelligent transportation, which extracts relevant features through global subnet and exposure subnet, respectively. Among them, the former introduces the feature attention mechanism to extract global features of the image, improving the overall brightness and color of the corrected image; the latter is based on the Unet network structure and introduces a multi-scale attention mechanism to extract exposure features at different scales in the image, improving the detailed texture of the corrected image; Finally, image exposure correction is achieved by fusing the dual features and mapping them to the image space. The experimental results show that this method has a PSNR of 21.8015 dB, SSIM of 0.8677, and NIQE of 11.7118 on the MSEC dataset, all of which are superior to existing exposure correction methods. It can effectively restore image color information and detail textures, proving that this method has good exposure correction effect.

     

/

返回文章
返回