高级检索

基于特征分块与域间融合的跨域足迹图像检索方法

Cross-Domain Footprint Image Retrieval Based on Feature Chunking and Domain Fusion

  • 摘要: 为了解决现有图像检索方法难以提取跨域足迹图像的高区分性域共享特征等问题, 提出了一种基于特征分块与域间融合的跨域足迹图像检索方法.首先, 以ResNet50为主干网络提取足迹图像全局特征; 然后通过水平分块特征提取方法获取更具鉴别性的特征; 最后, 采用跨域特征融合方法提取域共享信息, 并设计均衡损失以优化融合特征.在自行采集的200人跨域足迹图像数据集上进行实验, 在光学检索压力及压力检索光学2种模式下Rank-1分别达到91.38%和84.50%, 验证了所提方法的有效性.

     

    Abstract: Existing image retrieval methods face challenges in extracting highly discriminative domainshared features from cross-domain footprint images. Therefore, this paper proposes a cross-domain footprint image retrieval method based on feature chunking and inter-domain fusion. Firstly, global features of the footprint images are extracted using ResNet50 as the backbone network. Secondly, a horizontal block feature extraction approach is employed to obtain more discriminative features. Finally, a cross-domain feature fusion method is utilized to extract domain-shared information, and an equilibrium loss is designed to optimize the fusion features. The proposed method is evaluated on the self-collected dataset of 200 human cross-domain footprint image. Result indicate that Rank-1 accuracy achieves 91.38% and 84.50% for optics retrieval pressure and pressure retrieval optics, respectively.

     

/

返回文章
返回