基于改进动态图卷积神经网络的铁路场景语义分割方法
A Semantic Segmentation Method for Railway Scene Based on Improved Dynamic Graph Convolutional Neural Network
-
摘要: 实现高精度的铁路场景语义分割对于铁路领域有着重要的意义, 通过高精度的语义分割, 可以优化资产管理、改进规划设计并推进铁路智能化建设, 为铁路系统的运行和管理提供更好的支持. 针对目前在铁路场景语义分割中存在的数据获取成本高、分割精度低、泛化能力差等问题, 本文提出了一种基于改进动态图卷积神经网络(SAM-DGCNN)的铁路场景语义分割方法, 该方法首先利用高分辨率的无人机采集铁路场景的多视角图像; 再通过SFM-PMVS算法生成铁路场景的三维点云; 最后在动态图卷积神经网络(DGCNN)中引入空间注意力模块(SAM), 并通过改进后的图卷积神经网络对预处理后的点云数据完成高精度的语义分割. 研究结果表明: 采用无人机图像生成点云的方式采集成本低、处理难度小; 基于图像点云训练的SAM-DGCNN网络对于铁路场景语义分割具有更高的精度, 相较于DGCNN网络、PointNet++网络, 分割精度分别提高4%与6%Abstract: Realizing high-precision semantic segmentation of railroad scenes can optimize asset management, improve planning and design, and advance railroad intelligence. In response to the problems of high data acquisition cost, low segmentation accuracy, and poor generalization ability in current railway scene semantic segmentation, this paper proposes a railway scene semantic segmentation method based on an improved dynamic graph convolutional neural network (SAM-DGCNN). The method first uses UAV to acquire multi-view images of railroad scenes; then generates 3D point clouds by SFM-PMVS algorithm; and finally finishes semantic segmentation of point cloud data by improved graphical convolutional neural network. The results of the study show that SAM-DGCNN network based on image point cloud has higher accuracy for semantic segmentation of railroad scenes, and the segmentation accuracy is 4% and 6% higher than that of DGCNN network and PointNet++ network, respectively.